Abstract

An estimated number of 300,000 new anterior cruciate ligament (ACL) injuries occur each year in the United States. Recent studies have pointed out a correlation between the curvature of the femur intercondylar notch and the risk of noncontact ACL injury. Although several magnetic resonance (MR) imaging-based ACL diagnostics methods have already been proposed in the literature, most of them are based on machine learning or deep learning strategies, which are computationally expensive. In this paper, we propose a diagnostics framework for the risk of injury in the ACL based on the application of the inner-distance shape context (IDSC) to describe the curvature of the intercondylar notch from MR images. First, the contours of the intercondylar notch curvature from 91 MR images of the distal end of the femur (70 healthy and 21 with confirmed ACL injury) were extracted manually using standard image processing tools. Next, the IDSC was applied to calculate the similarity factor between the extracted contours and reference standard curvatures. Finally, probability density functions of the similarity factor data were obtained through parametric statistical inference, and the accuracy of the ACL injury risk diagnostics framework was assessed using receiver operating characteristic analysis (ROC). The overall results for the area under the curve (AUC) showed that the method reached a maximum accuracy of about 66%. Furthermore, the sensitivity and specificity results showed that an optimum discrimination threshold value for the similarity factor can be pursued that minimizes the incidence of false positives and false negatives simultaneously.

References

1.
Hewett
,
T. E.
,
Di Stasi
,
S. L.
, and
Myer
,
G. D.
,
2013
, “
Current Concepts for Injury Prevention in Athletes After Anterior Cruciate Ligament Reconstruction
,”
Am. J. Sports Med.
,
41
(
1
), pp.
216
224
.10.1177/0363546512459638
2.
McLean
,
S. G.
, and
Beaulieu
,
M. L.
,
2010
, “
Complex Integrative Morphological and Mechanical Contributions to ACL Injury Risk
,”
Exer. Sport Sci. Rev.
,
38
(
4
), pp.
192
200
.10.1097/JES.0b013e3181f450b4
3.
Renstrom
,
P.
,
Ljungqvist
,
A.
,
Arendt
,
E.
,
Beynnon
,
B.
,
Fukubayashi
,
T.
,
Garrett
,
W.
,
Georgoulis
,
T.
,
Hewett
,
T. E.
,
Johnson
,
R.
,
Krosshaug
,
T.
,
Mandelbaum
,
B.
,
Micheli
,
L.
,
Myklebust
,
G.
,
Roos
,
E.
,
Roos
,
H.
,
Schamasch
,
P.
,
Shultz
,
S.
,
Werner
,
S.
,
Wojtys
,
E.
, and
Engebretsen
,
L.
,
2008
, “
Non-Contact ACL Injuries in Female Athletes: An International Olympic Committee Current Concepts Statement
,”
Brit. J. Sports Med.
,
42
(
6
), pp.
394
412
.10.1136/bjsm.2008.048934
4.
Bahr
,
R.
, and
Krosshaug
,
T.
,
2005
, “
Understanding Injury Mechanisms: A Key Component of Preventing Injuries in Sport
,”
Brit. J. Sports Med.
,
39
(
6
), pp.
324
329
.10.1136/bjsm.2005.018341
5.
Griffin
,
L. Y.
,
Albohm
,
M. J.
,
Arendt
,
E. A.
,
Bahr
,
R.
,
Beynnon
,
B. D.
,
DeMaio
,
M.
,
Dick
,
R. W.
,
Engebretsen
,
L.
,
Garrett
,
W. E.
,
Hannafin
,
J. A.
,
Hewett
,
T. E.
,
Huston
,
L. J.
,
Ireland
,
M. L.
,
Johnson
,
R. J.
,
Lephart
,
S.
,
Mandelbaum
,
B. R.
,
Mann
,
B. J.
,
Marks
,
P. H.
,
Marshall
,
S. W.
,
Myklebust
,
G.
,
Noyes
,
F. R.
,
Powers
,
C.
,
Shields
,
C.
,
Shultz
,
S. J.
,
Silvers
,
H.
,
Slauterbeck
,
J.
,
Taylor
,
D. C.
,
Teitz
,
C. C.
,
Wojtys
,
E. M.
, and
Yu
,
B.
,
2006
, “
Understanding and Preventing Noncontact Anterior Cruciate Ligament Injuries:A Review of the Hunt Valley II Meeting, January 2005
,”
Am. J. Sports Med.
,
34
(
9
), pp.
1512
1532
.10.1177/0363546506286866
6.
Hashemi
,
J.
,
Chandrashekar
,
N.
,
Mansouri
,
H.
,
Gill
,
B.
,
Slauterbeck
,
J. R.
,
Schutt
,
R. C.
, Jr.
Dabezies
,
E.
, and
Beynnon
,
B. D.
,
2010
, “
Shallow Medial Tibial Plateau and Steep Medial and Lateral Tibial Slopes: New Risk Factors for Anterior Cruciate Ligament Injuries
,”
Am. J. Sports Med.
,
38
(
1
), pp.
54
62
.10.1177/0363546509349055
7.
Senişik
,
S.
,
Ozgürbüz
,
C.
,
Ergün
,
M.
,
Yüksel
,
O.
,
Taskiran
,
E.
,
Işlegen
,
C.
, and
Ertat
,
A.
,
2011
, “
Posterior Tibial Slope as a Risk Factor for Anterior Cruciate Ligament Rupture in Soccer Players
,”
J. Sports Sci. Med.
,
10
(
4
), pp.
763
767
.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3761495/
8.
Okazaki
,
Y.
,
Furumatsu
,
T.
,
Hiranaka
,
T.
,
Kintaka
,
K.
,
Kodama
,
Y.
,
Kamatsuki
,
Y.
, and
Ozaki
,
T.
,
2021
, “
Steep Posterior Slope of the Medial Tibial Plateau is Associated With Ramp Lesions of the Medial Meniscus and a Concomitant Anterior Cruciate Ligament Injury
,”
Asia Pac. J. Sports Med. Arthrosc. Rehabil. Technol.
,
24
, pp.
23
28
.10.1016/j.asmart.2021.01.005
9.
Bhuiyan
,
A. I.
,
Hashemi
,
J.
,
Shamim
,
N.
, and
Musa
,
S. M.
,
2018
, “
Tibial Eminence: A New Anatomical Risk Factor for Anterior Cruciate Ligament Injuries
,”
Multimedia Tools Appl.
,
77
(
17
), pp.
22605
22616
.10.1007/s11042-017-4874-8
10.
Al-Saeed
,
O.
,
Brown
,
M.
,
Athyal
,
R.
, and
Sheikh
,
M.
,
2013
, “
Association of Femoral Intercondylar Notch Morphology, Width Index and the Risk of Anterior Cruciate Ligament Injury
,”
Knee Surg. Sports Traumatol. Arthrosc.
,
21
(
3
), pp.
678
682
.10.1007/s00167-012-2038-y
11.
Miljko
,
M.
,
Grle
,
M.
,
Kozul
,
S.
,
Kolobarić
,
M.
, and
Djak
,
I.
,
2012
, “
Intercondylar Notch Width and Inner Angle of Lateral Femoral Condyle as the Risk Factors for Anterior Cruciate Ligament Injury in Female Handball Players in Herzegovina
,”
Coll. Antropol.
,
36
(
1
), pp.
195
200
. https://pubmed.ncbi.nlm.nih.gov/22816220/
12.
Bouras
,
T.
,
Fennema
,
P.
,
Burke
,
S.
, and
Bosman
,
H.
,
2017
, “
Stenotic Intercondylar Notch Type is Correlated With Anterior Cruciate Ligament Injury in Female Patients Using Magnetic Resonance Imaging
,”
Knee Surg. Sports Traumatol. Arthrosc.
,
26
(
4
), pp.
1252
1257
.10.1007/s00167-017-4625-4
13.
Keays
,
S. L.
,
Keays
,
R.
, and
Newcombe
,
P. A.
,
2016
, “
Femoral Intercondylar Notch Width Size: A Comparison Between Siblings With and Without Anterior Cruciate Ligament Injuries
,”
Knee Surg. Sports Traumatol. Arthrosc.
,
24
(
3
), pp.
672
679
.10.1007/s00167-014-3491-6
14.
Hoteya
,
K.
,
Kato
,
Y.
,
Motojima
,
S.
,
Ingham
,
S. J.
,
Horaguchi
,
T.
,
Saito
,
A.
, and
Tokuhashi
,
Y.
,
2011
, “
Association Between Intercondylar Notch Narrowing and Bilateral Anterior Cruciate Ligament Injuries in Athletes
,”
Arch Orthop. Trauma Surg.
,
131
(
3
), pp.
371
376
.10.1007/s00402-010-1254-5
15.
Shepstone
,
L.
,
Rogers
,
J.
,
Kirwan
,
J.
, and
Silverman
,
B.
,
2001
, “
Shape of the Intercondylar Notch of the Human Femur: A Comparison of Osteoarthritic and Non-Osteoarthritic Bones From a Skeletal Sample
,”
Ann. Rheumatic Diseases
,
60
(
10
), pp.
968
973
.10.1136/ard.60.10.968
16.
Remer
,
E. M.
,
Fitzgerald
,
S. W.
,
Friedman
,
H.
,
Rogers
,
L. F.
,
Hendrix
,
R. W.
, and
Schafer
,
M. F.
,
1992
, “
Anterior Cruciate Ligament Injury: MR Imaging Diagnosis and Patterns of Injury
,”
Radiographics
,
12
(
5
), pp.
901
915
.10.1148/radiographics.12.5.1529133
17.
Kijowski
,
R.
,
Sanogo
,
M. L.
,
Lee
,
K. S.
,
Muñoz Del Río
,
A.
,
McGuine
,
T. A.
,
Baer
,
G. S.
,
Graf
,
B. K.
, and
De Smet
,
A. A.
,
2012
, “
Short-Term Clinical Importance of Osseous Injuries Diagnosed at MR Imaging in Patients With Anterior Cruciate Ligament Tear
,”
Radiology
,
264
(
2
), pp.
531
541
.10.1148/radiol.12112171
18.
Russu
,
O.
,
Feier
,
A.
,
Ciorcila
,
E.
,
Miler
,
G.
,
Trambitas
,
C.
, and
Borodi
,
P.-G.
,
2021
, “
Correlation Between Magnetic Resonance Imaging and Arthroscopic Findings in Knee Lesions
,”
J. Interdiscip. Med.
,
6
(
3
), pp.
153
154
.10.2478/jim-2021-0016
19.
Stein
,
V.
,
Li
,
L.
,
Guermazi
,
A.
,
Zhang
,
Y.
,
Kent Kwoh
,
C.
,
Eaton
,
C. B.
, and
Hunter
,
D. J.
,
2010
, “
The Relation of Femoral Notch Stenosis to ACL Tears in Persons With Knee Osteoarthritis
,”
Osteoarthritis Cartilage
,
18
(
2
), pp.
192
199
.10.1016/j.joca.2009.09.006
20.
Luis
,
E.
, and
Cross
,
M. J.
,
2015
, “
Using Femoral Notch Width Index and Medial Condyle-to-Lateral Condyle Ration (M:L Ratio) as Predictors in Subjects Prone to Anterior Cruciate Ligament (ACL) Injury: An MRI Study
,”
SM J. Orthopedics
,
1
(
4
), pp.
1
4
. https://www.jsmcentral.org/sm-orthopedics/smjo-v1-1017.pdf
21.
Chen
,
C.
,
Ma
,
Y.
,
Geng
,
B.
,
Tan
,
X.
,
Zhang
,
B.
,
Jayswal
,
C. K.
,
Khan
,
M. S.
,
Meng
,
H.
,
Ding
,
N.
,
Jiang
,
J.
,
Wu
,
M.
,
Wang
,
J.
, and
Xia
,
Y.
,
2016
, “
Intercondylar Notch Stenosis of Knee Osteoarthritis and Relationship Between Stenosis and Osteoarthritis Complicated With Anterior Cruciate Ligament Injury: A Study in MRI
,”
Medicine (Baltimore
),
95
(
17
), p.
e3439
.10.1097/MD.0000000000003439
22.
Neogi
,
T.
,
Bowes
,
M. A.
,
Niu
,
J.
,
De Souza
,
K. M.
,
Vincent
,
G. R.
,
Goggins
,
J.
,
Zhang
,
Y.
, and
Felson
,
D. T.
,
2013
, “
Magnetic Resonance Imaging-Based Three-Dimensional Bone Shape of the Knee Predicts Onset of Knee Osteoarthritis: Data From the Osteoarthritis Initiative
,”
Arthritis Rheum.
,
65
(
8
), pp.
2048
2058
.10.1002/art.37987
23.
Bernardini
,
I.
,
N'Dele
,
D.
,
Faruch Bilfeld
,
M.
,
Thevenin-Lemoine
,
C.
,
Vial
,
J.
,
Cavaignac
,
E.
, and
Accadbled
,
F.
,
2021
, “
Prevalence and Detection of Meniscal Ramp Lesions in Pediatric Anterior Cruciate Ligament-Deficient Knees
,”
Am. J. Sports Med.
,
49
(
7
), pp.
1822
1826
.10.1177/03635465211010123
24.
Rayan
,
F.
,
Bhonsle
,
S.
, and
Shukla
,
D. D.
,
2009
, “
Clinical, MRI, and Arthroscopic Correlation in Meniscal and Anterior Cruciate Ligament Injuries
,”
Int. Orthop.
,
33
(
1
), pp.
129
132
.10.1007/s00264-008-0520-4
25.
Ullah
,
S. S. S. D.
,
Khan
,
Q.
,
Khan
,
M. A.
,
Janan
,
H.
, and
Khan
,
A.
,
2021
, “
Diagnostic Accuracy of Magnetic Resonance Imaging (MRI) Knee in Detecting Anterior Cruciate Ligament (ACL) Tear Taking Arthroscopy as Gold Standard
,”
J. Pakistan Orthop. Assoc.
,
33
(
2
), pp.
53
56
. https://www.jpoa.org.pk/index.php/upload/article/view/532/356
26.
Zappia
,
M.
,
Sconfienza
,
L. M.
,
Guarino
,
S.
,
Tumminello
,
M.
,
Iannella
,
G.
, and
Mariani
,
P. P.
,
2021
, “
Meniscal Ramp Lesions: Diagnostic Performance of MRI With Arthroscopy as Reference Standard
,”
Radiol. Med.
,
126
(
8
), pp.
1106
1116
.10.1007/s11547-021-01375-3
27.
Zhang
,
L.
,
Li
,
M.
,
Zhou
,
Y.
,
Lu
,
G.
, and
Zhou
,
Q.
,
2020
, “
Deep Learning Approach for Anterior Cruciate Ligament Lesion Detection: Evaluation of Diagnostic Performance Using Arthroscopy as the Reference Standard
,”
J. Magn. Reson. Imaging
,
52
(
6
), pp.
1745
1752
.10.1002/jmri.27266
28.
Chang
,
P. D.
,
Wong
,
T. T.
, and
Rasiej
,
M. J.
,
2019
, “
Deep Learning for Detection of Complete Anterior Cruciate Ligament Tear
,”
J. Digit. Imaging
,
32
(
6
), pp.
980
986
.10.1007/s10278-019-00193-4
29.
Belongie
,
S.
,
Malik
,
J.
, and
Puzicha
,
J.
,
2002
, “
Shape Matching and Object Recognition Using Shape Contexts
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
24
(
4
), pp.
509
522
.10.1109/34.993558
30.
Feng
,
J.
,
Ip
,
H. H. S.
,
Lai
,
L. Y.
, and
Linney
,
A.
,
2008
, “
Robust Point Correspondence Matching and Similarity Measuring for 3D Models by Relative Angle-Context Distributions
,”
Image Vision Comput.
,
26
(
6
), pp.
761
775
.10.1016/j.imavis.2007.08.018
31.
Xu
,
J.
,
Faruque
,
J.
,
Beaulieu
,
C.
,
Rubin
,
D.
, and
Napel
,
S.
,
2012
, “
A Comprehensive Descriptor of Shape: Method and Application to Content-Based Retrieval of Similar Appearing Lesions in Medical Images
,”
J. Digital Imaging
,
25
(
1
), pp.
121
128
.10.1007/s10278-011-9388-8
32.
Surendiran
,
B.
,
Ramanathan
,
P.
, and
Vadivel
,
A.
,
2015
, “
Effect of BIRADS Shape Descriptors on Breast Cancer Analysis
,”
Int. J. Med. Eng. Inf.
,
7
(
1
), pp.
65
79
.10.1504/IJMEI.2015.066244
33.
Bruse
,
J. L.
,
McLeod
,
K.
,
Biglino
,
G.
,
Ntsinjana
,
H. N.
,
Capelli
,
C.
,
Hsia
,
T. Y.
,
Sermesant
,
M.
,
Pennec
,
X.
,
Taylor
,
A. M.
, and
Schievano
,
S.
,
for the Modeling of Congenital Hearts Alliance (MOCHA) Collaborative Group,
2016
, “
A Statistical Shape Modelling Framework to Extract 3D Shape Biomarkers From Medical Imaging Data: Assessing Arch Morphology of Repaired Coarctation of the Aorta
,”
BMC Med Imaging
,
16
(
1
), pp.
1
19
.10.1186/s12880-016-0142-z
34.
Ling
,
H.
, and
Jacobs
,
D. W.
,
2007
, “
Shape Classification Using the Inner-Distance
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
29
(
2
), pp.
286
299
.10.1109/TPAMI.2007.41
35.
Nanni
,
L.
,
Lumini
,
A.
, and
Brahnam
,
S.
,
2014
, “
Ensemble of Shape Descriptors for Shape Retrieval and Classification
,”
Int. J. Adv. Intell. Paradigms
,
6
(
2
), pp.
136
156
.10.1504/IJAIP.2014.062177
36.
Almotairi
,
S.
, and
Ribeiro
,
E.
,
2014
, “
Action Classification Using Sequence Alignment and Shape Context
,”
Proceedings of the 27th International Florida Artificial Intelligence Research Society Conference
,
FLAIRS
, Pensacola Beach, FL, May 21–23, pp.
2
7
. https://www.aaai.org/ocs/index.php/FLAIRS/FLAIRS14/paper/download/7826/7796
37.
Ekwaro-Osire
,
S.
,
Cruz-Lozano
,
R.
,
Endeshaw
,
H. B.
, and
Dias
,
J. P.
,
2017
, “
Uncertainty in Communication With a Sketch
,”
J. Integr. Des. Process. Sci.
,
20
(
4
), pp.
43
60
.10.3233/jid-2016-0022
38.
Bhuiyan
,
A. I.
,
Hashemi
,
J.
, and
Slauterbeck
,
J.
,
2012
, “
Does the Curved Nature of the Tibia Influence the Non-Contact ACL Injury?
,”
ASME
Paper No. IMECE2012-89422.10.1115/IMECE2012-89422
39.
Bhuiyan
,
A. I.
,
Hashemi
,
J.
,
Slauterbeck
,
J.
, and
Breighner
,
R. E.
,
2012
, “
Influence of Tibial Eminence Size on the ACL Injury
,”
ASME
Paper No. IMECE2011-63555.
10.1115/IMECE2011-63555
40.
Gorman
,
J. W.
,
Mitchell
,
O. R.
, and
Kuhl
,
F. P.
,
1988
, “
Partial Shape Recognition Using Dynamic Programming
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
10
(
2
), pp.
257
266
.10.1109/34.3887
41.
Cunha
,
A.
,
2017
, “
Modeling and Quantification of Physical Systems Uncertainties in a Probabilistic Framework
,”
Probabilistic Prognostics and Health Management of Energy Systems
,
S.
Ekwaro-Osire
,
A.C.
Gonçalves
, and
F.M.
Alemayehu
, eds.,
Springer International Publishing
,
Cham
, pp.
127
56
.
42.
Haldar
,
A.
, and
Mahadevan
,
S.
,
2000
,
Probability, Reliability, and Statistical Methods in Engineering Design
, John
Wiley & Sons, New York
.
43.
Hajian-Tilaki
,
K.
,
2013
, “
Receiver Operating Characteristic (ROC) Curve Analysis for Medical Diagnostic Test Evaluation
,”
Caspian J. Intern. Med.
,
4
(
2
), pp.
627
635
. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3755824/
You do not currently have access to this content.