Abstract

Computational fluid–structure interaction (FSI) modeling is a technique used in engineering to understand the effect that fluid flow and surrounding structures have on one another. Used in the aerospace and turbine industries, when applied in the appropriate scenarios, the outcome of fluid–solid interaction analyses may yield more precise results than computational fluid dynamics or mechanical structural testing/analysis alone. For biological systems, such as the cerebrovascular system in humans, the inherent complexity of the system makes performing clinically accurate predictive computational modeling challenging. An isolated computational fluid dynamic analysis of the blood flow to predict cerebral aneurysm rupture or an isolated structural analysis of the cerebral aneurysm dome may be only part of the answer to predicting whether an aneurysm will rupture and over what time span. The variable pressures and flow rate of blood through vessels cause blood vessel walls to change shape, rebound, and move within the adjacent tissue. This rebounding movement, in turn, alters the flow pattern of blood. In pathologies such as cerebral aneurysms or cerebral arteriovenous malformations (AVMs) with unpredictable rupture profiles, these small interactions between blood flow and vessel distension may potentially explain the difference between a catastrophic hemorrhage and an entirely quiescent lesion. This two-part review evaluates (1) the current understanding of cerebrovascular fluid and structure mechanical properties and (2) the state of fluid–structure interaction models in the cerebrovascular systems. Additionally, as the cardiovascular FSI literature is much more extensive than the cerebrovascular literature, future potential studies that glean insight from that work are discussed.

References

1.
Vlak
,
M. H. M.
,
Algra
,
A.
,
Brandenburg
,
R.
, and
Rinkel
,
G. J. E.
,
2011
, “
Prevalence of Unruptured Intracranial Aneurysms, With Emphasis on Sex, Age, Comorbidity, Country, and Time Period: A Systematic Review and Meta-Analysis
,”
Lancet Neurol.
,
10
(
7
), pp.
626
636
.10.1016/S1474-4422(11)70109-0
2.
Bijlenga
,
P.
,
Gondar
,
R.
,
Schilling
,
S.
,
Morel
,
S.
,
Hirsch
,
S.
,
Cuony
,
J.
,
Corniola
,
M. V.
,
Perren
,
F.
,
Rüfenacht
,
D.
, and
Schaller
,
K.
,
2017
, “
PHASES Score for the Management of Intracranial Aneurysm: A Cross-Sectional Population-Based Retrospective Study
,”
Stroke
,
48
(
8
), pp.
2105
2112
.10.1161/STROKEAHA.117.017391
3.
Hackenberg
,
K. A. M.
,
Hänggi
,
D.
, and
Etminan
,
N.
,
2018
, “
Unruptured Intracranial Aneurysms: Contemporary Data and Management
,”
Stroke
,
49
(
9
), pp.
2268
2275
.10.1161/STROKEAHA.118.021030
4.
Ajiboye
,
N.
,
Chalouhi
,
N.
,
Starke
,
R. M.
,
Zanaty
,
M.
, and
Bell
,
R.
,
2015
, “
Unruptured Cerebral Aneurysms: Evaluation and Management
,”
Sci. World J.
,
2015
, pp.
1
10
.10.1155/2015/954954
5.
Okada
,
T.
,
Ishikawa
,
T.
,
Moroi
,
J.
, and
Suzuki
,
A.
,
2016
, 2, “
Timing of Retreatment for Patients With Previously Coiled or Clipped Intracranial Aneurysms: Analysis of 156 Patients With Multiple Treatments
,”
Surg. Neurol. Int.
,
7
(
Suppl. 2
), pp.
S40
S48
.10.4103/2152-7806.173570
6.
Pierot
,
L.
,
Spelle
,
L.
,
Vitry
,
F.
,
Pasco
,
A.
,
Bonneville
,
J. F.
,
Barreau
,
X.
,
Berge
,
J.
,
Courthéoux
,
P.
,
Saleme
,
S.
,
Chabert
,
E.
, and
Herbreteau
,
D.
,
ATENA Investigators,
2010
, “
Immediate Anatomic Results After the Endovascular Treatment of Unruptured Intracranial Aneurysms: Analysis of the ATENA Series
,”
Am. J. Neuroradiol.
,
31
(
1
), pp.
140
144
.10.3174/ajnr.A1745
7.
The International Study of Unruptured Intracranial Aneurysms Investigators,
1998
, “
Unruptured Intracranial Aneurysms—Risk of Rupture and Risks of Surgical Intervention
,”
New Engl. J. Med.
,
339
(
24
), pp.
1725
1733
.10.1056/NEJM199812103392401
8.
The UCAS Japan Investigators,
2012
, “
The Natural Course of Unruptured Cerebral Aneurysms in a Japanese Cohort
,”
New Engl. J. Med.
,
366
(
26
), pp.
2474
2482
.10.1056/NEJMoa1113260
9.
Hirschhorn
,
M.
,
Tchantchaleishvili
,
V.
,
Stevens
,
R.
,
Rossano
,
J.
, and
Throckmorton
,
A.
,
2020
, “
Fluid–Structure Interaction Modeling in Cardiovascular Medicine—A Systematic Review 2017–2019
,”
Med. Eng. Phys.
,
78
(
78
), pp.
1
13
.10.1016/j.medengphy.2020.01.008
10.
Valencia
,
A.
,
Burdiles
,
P.
,
Ignat
,
M.
,
Mura
,
J.
,
Bravo
,
E.
,
Rivera
,
R.
, and
Sordo
,
J.
,
2013
, “
Fluid Structural Analysis of Human Cerebral Aneurysm Using Their Own Wall Mechanical Properties
,”
Comput. Math. Methods Med.
,
2013
, pp.
1
18
.10.1155/2013/293128
11.
Benra
,
F. K.
,
Dohmen
,
H. J.
,
Pei
,
J.
,
Schuster
,
S.
, and
Wan
,
B.
,
2011
, “
A Comparison of One-Way and Two-Way Coupling Methods for Numerical Analysis of Fluid-Structure Interactions
,”
J. Appl. Math.
,
2011
, pp.
1
17
.10.1155/2011/853560
12.
Ahamed
,
M.
,
Atique
,
S.
,
Munshi
,
M.
, and
Koiranen
,
T.
,
2017
, “
A Concise Description of One Way and Two Way Coupling Methods for Fluid-Structure Interaction Problems
,”
Am. J. Eng. Res. (AJER)
,
6
(
3
), pp.
86
89
.https://www.ajer.org/papers/v6(03)/O06038689.pdf
13.
Goriely
,
A.
,
Geers
,
M. G. D.
,
Holzapfel
,
G. A.
,
Jayamohan
,
J.
,
Jérusalem
,
A.
,
Sivaloganathan
,
S.
,
Squier
,
W.
,
van Dommelen
,
J. A. W.
,
Waters
,
S.
, and
Kuhl
,
E.
,
2015
, “
Mechanics of the Brain: Perspectives, Challenges, and Opportunities
,”
Biomech. Model. Mechanobiol.
,
14
(
5
), pp.
931
965
.10.1007/s10237-015-0662-4
14.
Fung
,
Y. C.
, and
Cowin
,
S. C.
,
1993
, “
Biomechanics: Motion, Flow, Stress, and Growth
,”
ASME J. Appl. Mech.
,
60
(
2
), pp.
567
567.
10.1115/1.2900838
15.
Ebrahimi
,
A. P.
,
2009
, “
Mechanical Properties of Normal and Diseased Cerebrovascular System
,”
J. Vasc. Intervent. Neurol.
,
2
(
2
), pp.
155
162
.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3317338/pdf/jvin-2-2-162.pdf
16.
Gao
,
Y. R.
,
Greene
,
S. E.
, and
Drew
,
P. J.
,
2015
, “
Mechanical Restriction of Intracortical Vessel Dilation by Brain Tissue Sculpts the Hemodynamic Response
,”
NeuroImage
,
115
, pp.
162
176
.10.1016/j.neuroimage.2015.04.054
17.
Alnæs
,
M. S.
,
Isaksen
,
J.
,
Mardal
,
K. A.
,
Romner
,
B.
,
Morgan
,
M. K.
, and
Ingebrigtsen
,
T.
,
2007
, “
Computation of Hemodynamics in the Circle of Willis
,”
Stroke
,
38
(
9
), pp.
2500
2505
.10.1161/STROKEAHA.107.482471
18.
Ferrández
,
A.
,
David
,
T.
,
Bamford
,
J.
,
Scott
,
J.
, and
Guthrie
,
A.
,
2001
, “
Computational Models of Blood Flow in the Circle of Willis
,”
Comput. Methods Biomech. Biomed. Eng.
,
4
(
1
), pp.
1
26
.10.1080/10255840008907996
19.
Seo
,
J. H.
,
Eslami
,
P.
,
Caplan
,
J.
,
Tamargo
,
R. J.
, and
Mittal
,
R.
,
2018
, “
A Highly Automated Computational Method for Modeling of Intracranial Aneurysm Hemodynamics
,”
Front. Physiol.
,
9
(
JUN
), pp.
1
12
.10.3389/fphys.2018.00681
20.
Berg
,
P.
,
Voß
,
S.
,
Saalfeld
,
S.
,
Janiga
,
G.
,
Bergersen
,
A. W.
,
Valen-Sendstad
,
K.
,
Bruening
,
J.
,
Goubergrits
,
L.
,
Spuler
,
A.
,
Cancelliere
,
N. M.
,
Steinman
,
D. A.
,
Pereira
,
V. M.
,
Chiu
,
T. L.
,
Tsang
,
A. C. O.
,
Chung
,
B. J.
,
Cebral
,
J. R.
,
Cito
,
S.
,
Pallarès
,
J.
,
Copelli
,
G.
,
Csippa
,
B.
,
Paál
,
G.
,
Fujimura
,
S.
,
Takao
,
H.
,
Hodis
,
S.
,
Hille
,
G.
,
Karmonik
,
C.
,
Elias
,
S.
,
Kellermann
,
K.
,
Khan
,
M. O.
,
Marsden
,
A. L.
,
Morales
,
H. G.
,
Piskin
,
S.
,
Finol
,
E. A.
,
Pravdivtseva
,
M.
,
Rajabzadeh-Oghaz
,
H.
,
Paliwal
,
N.
,
Meng
,
H.
,
Seshadhri
,
S.
,
Howard
,
M.
,
Shojima
,
M.
,
Sugiyama
,
S.-I.
,
Niizuma
,
K.
,
Sindeev
,
S.
,
Frolov
,
S.
,
Wagner
,
T.
,
Brawanski
,
A.
,
Qian
,
Y.
,
Wu
,
Y.-A.
,
Carlson
,
K. D.
,
Dragomir-Daescu
,
D.
, and
Beuing
,
O.
,
2018
, “
Multiple Aneurysms Anatomy Challenge 2018 (MATCH): Phase I: Segmentation
,”
Cardiovasc. Eng. Technol.
,
9
(
4
), pp.
565
581
.10.1007/s13239-018-00376-0
21.
Berg
,
P.
,
Voß
,
S.
,
Janiga
,
G.
,
Saalfeld
,
S.
,
Bergersen
,
A. W.
,
Valen-Sendstad
,
K.
,
Bruening
,
J.
,
Goubergrits
,
L.
,
Spuler
,
A.
,
Chiu
,
T. L.
,
Tsang
,
A. C. O.
,
Copelli
,
G.
,
Csippa
,
B.
,
Paál
,
G.
,
Závodszky
,
G.
,
Detmer
,
F. J.
,
Chung
,
B. J.
,
Cebral
,
J. R.
,
Fujimura
,
S.
,
Takao
,
H.
,
Karmonik
,
C.
,
Elias
,
S.
,
Cancelliere
,
N. M.
,
Najafi
,
M.
,
Steinman
,
D. A.
,
Pereira
,
V. M.
,
Piskin
,
S.
,
Finol
,
E. A.
,
Pravdivtseva
,
M.
,
Velvaluri
,
P.
,
Rajabzadeh-Oghaz
,
H.
,
Paliwal
,
N.
,
Meng
,
H.
,
Seshadhri
,
S.
,
Venguru
,
S.
,
Shojima
,
M.
,
Sindeev
,
S.
,
Frolov
,
S.
,
Qian
,
Y.
,
Wu
,
Y.-A.
,
Carlson
,
K. D.
,
Kallmes
,
D. F.
,
Dragomir-Daescu
,
D.
, and
Beuing
,
O.
,
2019
, “
Multiple Aneurysms Anatomy Challenge 2018 (MATCH)—Phase II: Rupture Risk Assessment
,”
Int. J. Comput. Assist. Radiol. Surg.
,
14
(
10
), pp.
1795
1804
.10.1007/s11548-019-01986-2
22.
Voß
,
S.
,
Beuing
,
O.
,
Janiga
,
G.
, and
Berg
,
P.
,
2019
, “
Multiple Aneurysms Anatomy Challenge 2018 (MATCH)—Phase IB: Effect of Morphology on Hemodynamics
,”
PLoS One
,
14
(
5
), pp.
e0216813
e0216816
.10.1371/journal.pone.0216813
23.
Fuchs
,
A.
,
Berg
,
N.
, and
Prahl Wittberg
,
L.
,
2021
, “
Pulsatile Aortic Blood Flow—A Critical Assessment of Boundary Conditions
,”
ASME J. Eng. Sci. Med. Diagnost. Ther.
,
4
(
1
), p. 011002.10.1115/1.4048978
24.
Scotti
,
C. M.
,
Shkolnik
,
A. D.
,
Muluk
,
S. C.
, and
Finol
,
E. A.
,
2005
, “
Fluid-Structure Interaction in Abdominal Aortic Aneurysms: Effects of Asymmetry and Wall Thickness
,”
BioMed. Eng. Online
,
4
(
1
), p.
22
.10.1186/1475-925X-4-64
25.
Cipolla
,
M. J.
,
2016
, “
The Cerebral Circulation, Second Edition
,”
Colloquium Ser. Integr. Syst. Physiol. Mol. Funct.
,
8
(
1
), pp.
1
80
.10.4199/C00141ED2V01Y201607ISP066
26.
Xu
,
J.
, and
Shi
,
G. P.
,
2014
, “
Vascular Wall Extracellular Matrix Proteins and Vascular Diseases
,”
Biochim. Biophys. Acta Mol. Basis Disease
,
1842
(
11
), pp.
2106
2119
.10.1016/j.bbadis.2014.07.008
27.
Wagenseil
,
J. E.
, and
Mecham
,
R. P.
,
2009
, “
Vascular Extracellular Matrix and Arterial Mechanics
,”
Physiol. Rev.
,
89
(
3
), pp.
957
989
.10.1152/physrev.00041.2008
28.
Davies
,
P. F.
,
2009
, “
Hemodynamic Shear Stress and the Endothelium in Cardiovascular Pathophysiology
,”
Nat. Clin. Pract. Cardiovasc. Med.
,
6
(
1
), pp.
16
26
.10.1038/ncpcardio1397
29.
Cebral
,
J. R.
,
Duan
,
X.
,
Chung
,
B. J.
,
Putman
,
C.
,
Aziz
,
K.
, and
Robertson
,
A. M.
,
2015
, “
Wall Mechanical Properties and Hemodynamics of Unruptured Intracranial Aneurysms
,”
Am. J. Neuroradiol.
,
36
(
9
), pp.
1695
1703.
10.3174/ajnr.A4358
30.
Fung
,
Y. C.
, and
Liu
,
S. Q.
,
1995
, “
Determination of the Mechanical Properties of the Different Layers of Blood Vessels In Vivo
,”
Proc. Natl. Acad. Sci. U. S. A.
,
92
(
6
), pp.
2169
2173
.10.1073/pnas.92.6.2169
31.
Hemmasizadeh
,
A.
,
Autieri
,
M.
, and
Darvish
,
K.
,
2012
, “
Multilayer Material Properties of Aorta Determined From Nanoindentation Tests
,”
J. Mech. Behav. Biomed. Mater.
,
15
, pp.
199
207
.10.1016/j.jmbbm.2012.06.008
32.
Niu
,
P. P.
,
Yu
,
Y.
,
Zhou
,
H. W.
,
Liu
,
Y.
,
Luo
,
Y.
,
Guo
,
Z. N.
,
Jin
,
H.
, and
Yang
,
Y.
,
2016
, “
Vessel Wall Differences Between Middle Cerebral Artery and Basilar Artery Plaques on Magnetic Resonance Imaging
,”
Sci. Rep.
,
6
(
1
), p. 38534.10.1038/srep38534
33.
Moore
,
N. Z.
,
Witek
,
A.
,
Tsiang
,
J.
,
Hussain
,
M. S.
,
Prayson
,
R.
, and
Bain
,
M.
,
2019
, “
Histological Analysis of Intracranial Cerebral Arteries for Elastin Thickness
,”
AANS/CNS Joint Cerebrovascular Annual Meeting
, Unpublished Work, Honolulu, HI, Feb. 4–5, p.
3
.
34.
Kung
,
E. O.
,
Les
,
A. S.
,
Figueroa
,
C. A.
,
Medina
,
F.
,
Arcaute
,
K.
,
Wicker
,
R. B.
,
McConnell
,
M. V.
, and
Taylor
,
C. A.
,
2011
, “
In Vitro Validation of Finite Element Analysis of Blood Flow in Deformable Models
,”
Ann. Biomed. Eng.
,
39
(
7
), pp.
1947
1960
.10.1007/s10439-011-0284-7
35.
Shafigh
,
M.
,
Fatouraee
,
N.
, and
Seddighi
,
A.
,
2013
, “
Fung's Model Constants for Intracranial Blood Vessel of Human Using Biaxial Tensile Test Results
,”
Int. J. Biol. Biomol. Agric. Food Biotechnol. Eng.
,
7
(
3
), pp.
215
219
.10.5281/zenodo.1088444
36.
Monson
,
K. L.
,
Barbaro
,
N. M.
, and
Manley
,
G. T.
,
2008
, “
Biaxial Response of Passive Human Cerebral Arteries
,”
Ann. Biomed. Eng.
,
36
(
12
), pp.
2028
2041
.10.1007/s10439-008-9578-9
37.
Tóth
,
B. K.
,
Raffai
,
G.
, and
Bojtár
,
I.
,
2006
, “
Analysis of the Mechanical Parameters of Human Brain Aneurysm
,”
Acta Bioeng. Biomech.
,
7
(
1
), pp.
3
22
.http://www.actabio.pwr.wroc.pl/Vol7No1/1.pdf
38.
Holzapfel
,
G. A.
,
Gasser
,
T. C.
, and
Ogden
,
R. W.
,
2006
, “
A New Constitutive Framework for Arterial Wall Mechanics and a Comparative Study of Material Models
,”
Cardiovasc. Soft Tissue Mech.
, 23, pp.
1
48
.
39.
Valencia
,
A.
,
Muñoz
,
F.
,
Araya
,
S.
,
Rivera
,
R.
, and
Bravo
,
E.
,
2009
, “
Comparison Between Computational Fluid Dynamics, Fluid-Structure Interaction and Computational Structural Dynamics Predictions of Flow-Induced Wall Mechanics in an Anatomically Realistic Cerebral Aneurysm Model
,”
Int. J. Comput. Fluid Dyn.
,
23
(
9
), pp.
649
666
.10.1080/10618560903476386
40.
Crosetto
,
P.
,
Deparis
,
S.
,
Fourestey
,
G.
, and
Quarteroni
,
A.
,
2011
, “
Parallel Algorithms for Fluid-Structure Interaction Problems in Haemodynamics
,”
SIAM J. Sci. Comput.
,
33
(
4
), pp.
1598
1622
.10.1137/090772836
41.
Ivanov
,
D.
,
Dol
,
A.
, and
Polienko
,
A.
,
2016
, “
Patient-Specific Hemodynamics and Stress-Strain State of Cerebral Aneurysms
,”
Acta Bioeng. Biomech.
,
18
(
2
), pp.
10
17
.http://www.actabio.pwr.wroc.pl/Vol18No2/2.pdf
42.
Perdikaris
,
P.
, and
Karniadakis
,
G. E.
,
2014
, “
Fractional-Order Viscoelasticity in One-Dimensional Blood Flow Models
,”
Ann. Biomed. Eng.
,
42
(
5
), pp.
1012
1023
.10.1007/s10439-014-0970-3
43.
Tricerri
,
P.
,
Dedè
,
L.
,
Deparis
,
S.
,
Quarteroni
,
A.
,
Robertson
,
A. M.
, and
Sequeira
,
A.
,
2015
, “
Fluid-Structure Interaction Simulations of Cerebral Arteries Modeled by Isotropic and Anisotropic Constitutive Laws
,”
Comput. Mech.
,
55
(
3
), pp.
479
498
.10.1007/s00466-014-1117-y
44.
Perdikaris
,
P.
,
Grinberg
,
L.
, and
Karniadakis
,
G. E.
,
2016
, “
Multiscale Modeling and Simulation of Brain Blood Flow
,”
Phys. Fluids
,
28
(
2
), p.
021304
.10.1063/1.4941315
45.
Prado
,
C. M.
, and
Rossi
,
M. A.
,
2006
, “
Circumferential Wall Tension Due to Hypertension Plays a Pivotal Role in Aorta Remodelling
,”
Int. J. Exp. Pathol.
,
87
(
6
), pp.
425
436
.10.1111/j.1365-2613.2006.00506.x
46.
Silver
,
F. H.
,
Horvath
,
I.
, and
Foran
,
D. J.
,
2001
, “
Viscoelasticity of the Vessel Wall: The Role of Collagen and Elastic Fibers
,”
Crit. Rev. Biomed. Eng.
,
29
(
3
), pp.
279
301
.10.1615/CritRevBiomedEng.v29.i3.10
47.
Lillie
,
M. A.
,
Armstrong
,
T. E.
,
Gérard
,
S. G.
,
Shadwick
,
R. E.
, and
Gosline
,
J. M.
,
2012
, “
Contribution of Elastin and Collagen to the Inflation Response of the Pig Thoracic Aorta: Assessing Elastin's Role in Mechanical Homeostasis
,”
J. Biomech.
,
45
(
12
), pp.
2133
2141
.10.1016/j.jbiomech.2012.05.034
48.
Lillie
,
M. A.
, and
Gosline
,
J. M.
,
2007
, “
Mechanical Properties of Elastin Along the Thoracic Aorta in the Pig
,”
J. Biomech.
,
40
(
10
), pp.
2214
2221
.10.1016/j.jbiomech.2006.10.025
49.
Sawabe
,
M.
,
2010
, “
Vascular Aging: From Molecular Mechanism to Clinical Significance
,”
Geriatr. Gerontol. Int.
,
10
(
Suppl. 1
), pp.
S213
S220
.10.1111/j.1447-0594.2010.00603.x
50.
Ogden
,
R. W.
,
2009
,
Anisotropy and Nonlinear Elasticity in Arterial Wall Mechanics
(CISM International Centre for Mechanical Sciences, Courses and Lectures), Vol.
508
, Springer, Vienna, Austria, pp.
179
258
.
51.
Clark
,
T. E.
,
Lillie
,
M. A.
,
Vogl
,
A. W.
,
Gosline
,
J. M.
, and
Shadwick
,
R. E.
,
2015
, “
Mechanical Contribution of Lamellar and Interlamellar Elastin Along the Mouse Aorta
,”
J. Biomech.
,
48
(
13
), pp.
3599
3605
.10.1016/j.jbiomech.2015.08.004
52.
Mithieux
,
S. M.
, and
Weiss
,
A. S.
,
2005
, “
Elastin
,”
Adv. Protein Chem.
,
70
, pp.
437
461
.10.1016/S0065-3233(05)70013-9
53.
Humphrey
,
J. D.
,
1995
, “
Mechanics of the Arterial Wall: Review and Directions
,”
Crit. Rev. Biomed. Eng.
,
23
(
1–2
), pp.
1
162
.10.1615/CritRevBiomedEng.v23.i1-2.10
54.
McCarthy
,
N. J.
, and
Bennett
,
M.
,
2000
, “
The Regulation of Vascular Smooth Muscle Cell Apoptosis
,”
Cardiovasc. Res.
,
45
(
3
), pp.
747
755
.10.1016/S0008-6363(99)00275-8
55.
Karunanithi
,
K.
,
Han
,
C.
,
Lee
,
C. J.
,
Shi
,
W.
,
Duan
,
L.
, and
Qian
,
Y.
,
2015
, “
Identification of a Hemodynamic Parameter for Assessing Treatment Outcome of EDAS in Moyamoya Disease
,”
J. Biomech.
,
48
(
2
), pp.
304
309
.10.1016/j.jbiomech.2014.11.029
56.
Masuoka
,
T.
,
Hayashi
,
N.
,
Hori
,
E.
,
Kuwayama
,
N.
,
Ohtani
,
O.
, and
Endo
,
S.
,
2010
, “
Distribution of Internal Elastic Lamina and External Elastic Lamina in the Internal Carotid Artery: Possible Relationship With Atherosclerosis
,”
Neurol. Med. Chir.
,
50
(
3
), pp.
179
182
.10.2176/nmc.50.179
57.
Qin
,
G.
,
Wang
,
L.
,
Hua
,
Y.
,
Hou
,
H.
,
Zou
,
Q.
,
Wang
,
D.
,
Hu
,
Z.
, and
Lu
,
D.
,
2020
, “
Comparative Morphology of the Internal Elastic Lamina of Cerebral and Peripheral Arteries
,”
Int. J. Clin. Exp. Pathol.
,
13
(
4
), pp.
764
770
.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7191140/
58.
Xu
,
Z.
,
Rui
,
Y. N.
,
Hagan
,
J. P.
, and
Kim
,
D. H.
,
2019
, “
Intracranial Aneurysms: Pathology, Genetics, and Molecular Mechanisms
,”
NeuroMol. Med.
,
21
(
4
), pp.
325
343
.10.1007/s12017-019-08537-7
59.
Baskurt
,
O. K.
, and
Meiselman
,
H. J.
,
2003
, “
Blood Rheology and Hemodynamics
,”
Semin. Thromb. Hemostasis
,
29
(
5
), pp.
435
450
.10.1055/s-2003-44551
60.
Ku
,
D. N.
,
1997
, “
Blood Flow in Arteries
,”
Annu. Rev. Fluid Mech.
,
29
(
1
), pp.
399
434
.10.1146/annurev.fluid.29.1.399
61.
Lux
,
S. E.
,
1979
, “
Dissecting the Red Cell Membrane Skeleton
,”
Nature
,
281
(
5731
), pp.
426
429
.10.1038/281426a0
62.
Mohandas
,
N.
,
Chasis
,
J. A.
, and
Shohet
,
S. B.
,
1983
, “
The Influence of Membrane Skeleton on Red Cell Deformability, Membrane Material Properties, and Shape
,”
Semin. Hematol.
,
20
(
3
), pp.
225
242
.https://pubmed.ncbi.nlm.nih.gov/6353591/
63.
Mohandas
,
N.
, and
Shohet
,
S. B.
,
1981
, “
The Role of Membrane-Associated Enzymes in Regulation of Erythrocyte Shape and Deformability
,”
Clin. Haematol.
,
10
(
1
), pp.
223
237
.10.1016/S0308-2261(21)00217-4
64.
Lowe
,
G. D. O.
, and
Barbenel
,
J. C.
,
2019
, “
Plasma and Blood Viscosity
,”
Clinical Blood Rheology
, 1st ed.,
CRC Press
, Boca Raton, FL, pp.
11
44
.
65.
Pardy
,
B.
,
2005
, “
Clinical Hemorheology. S. Chien, J. Dormandy, E. Ernst and A. Matrai. 245 × 160 mm. Pp. 387 + xi. Illustrated. 1987. The Hague: Martinus Nijhoff Publishers, Leiden, The Netherlands. £65.75
,”
Brit. J. Surg.
,
75
(
6
), pp.
623
623
.10.1002/bjs.1800750648
66.
Merrill
,
E. W.
,
Gilliland
,
E. R.
,
Cokelet
,
G.
,
Shin
,
H.
,
Britten
,
A.
, and
Wells
,
R. E.
,
1963
, “
Rheology of Blood and Flow in the Microcirculation
,”
J. Appl. Physiol.
,
18
(
2
), pp.
255
260
.10.1152/jappl.1963.18.2.255
67.
Isbister
,
J. P.
,
2016
, “
The Stress Polycythaemia Syndromes and Their Haemorheological Significance
,”
Clin. Hemorheol.
,
7
(
2
), pp.
159
179
.10.3233/CH-1987-7203
68.
Lanotte
,
L.
,
Mauer
,
J.
,
Mendez
,
S.
,
Fedosov
,
D. A.
,
Fromental
,
J. M.
,
Claveria
,
V.
,
Nicoud
,
F.
,
Gompper
,
G.
, and
Abkarian
,
M.
,
2016
, “
Red Cells' Dynamic Morphologies Govern Blood Shear Thinning Under Microcirculatory Flow Conditions
,”
Proc. Natl. Acad. Sci. U. S. A.
,
113
(
47
), pp.
13289
13294
.10.1073/pnas.1608074113
69.
Schmid-Schönbein
,
H.
,
Wells
,
R. E.
, and
Goldstone
,
J.
,
1971
, “
Fluid Drop-Like Behaviour of Erythrocytes–Disturbance in Pathology and Its Quantification
,”
Biorheology
,
7
(
4
), pp.
227
234
.10.3233/BIR-1971-7406
70.
Wells
,
R.
, and
Schmid-Schönbein
,
H.
,
1969
, “
Red Cell Deformation and Fluidity of Concentrated Cell Suspensions
,”
J. Appl. Physiol.
,
27
(
2
), pp.
213
217
.10.1152/jappl.1969.27.2.213
71.
Baskurt
,
O. K.
,
2007
, “
Handbook of Hemorheology and Hemodynamics
,”
Health Care
,
69
, pp.
1
455
.
72.
Evans
,
E. A.
, and
La Celle
,
P. L.
,
1975
, “
Intrinsic Material Properties of the Erythrocyte Membrane Indicated by Mechanical Analysis of Deformation
,”
Blood
,
45
(
1
), pp.
29
43
.10.1182/blood.V45.1.29.29
73.
AlMomani
,
T. D.
,
Vigmostad
,
S. C.
,
Chivukula
,
V. K.
,
Al-Zube
,
L.
,
Smadi
,
O.
, and
BaniHani
,
S.
,
2012
, “
Red Blood Cell Flow in the Cardiovascular System: A Fluid Dynamics Perspective
,”
Crit. Rev. Biomed. Eng.
,
40
(
5
), pp.
427
440
.10.1615/CritRevBiomedEng.v40.i5.30
74.
Fisher
,
M.
, and
Meiselman
,
H. J.
,
1991
, “
Hemorheological Factors in Cerebral Ischemia
,”
Stroke
,
22
(
9
), pp.
1164
1169
.10.1161/01.STR.22.9.1164
75.
Tanahashi
,
N.
,
Gotoh
,
F.
,
Tomita
,
M.
,
Shinohara
,
T.
,
Terayama
,
Y.
,
Mihara
,
B.
,
Ohta
,
K.
, and
Nara
,
M.
,
1989
, “
Enhanced Erythrocyte Aggregability in Occlusive Cerebrovascular Disease
,”
Stroke
,
20
(
9
), pp.
1202
1027
.10.1161/01.STR.20.9.1202
76.
Tikhomirova
,
I. A.
,
Oslyakova
,
A. O.
, and
Mikhailova
,
S. G.
,
2011
, “
Microcirculation and Blood Rheology in Patients With Cerebrovascular Disorders
,”
Clin. Hemorheol. Microcirc.
,
49
(
1–4
), pp.
295
305
.10.3233/CH-2011-1480
77.
Wood
,
J. H.
, and
Kee
,
D. B.
,
1985
, “
Hemorheology of the Cerebral Circulation in Stroke
,”
Stroke
,
16
(
5
), pp.
765
772
.10.1161/01.STR.16.5.765
78.
Nobile
,
F.
,
2009
, “
Coupling Strategies for the Numerical Simulation of Blood Flow in Deformable Arteries by 3D and 1D Models
,”
Math. Comput. Modell.
,
49
(
11–12
), pp.
2152
2160
.10.1016/j.mcm.2008.07.019
79.
Eppihimer
,
M. J.
, and
Lipowsky
,
H. H.
,
1996
, “
Effects of Leukocyte-Capillary Plugging on the Resistance to Flow in the Microvasculature of Cremaster Muscle for Normal and Activated Leukocytes
,”
Microvasc. Res.
,
51
(
2
), pp.
187
201
.10.1006/mvre.1996.0020
80.
Edwards
,
S.
,
1988
, “
Dynamics of Polymeric Liquids Vol. 1, Fluid Mechanics, Edited by R. B. Bird, R. C. Armstrong and 0. Hassager, Wiley Interscience, New York, 1987, Pp. xxi + 649, Price £64.15. ISBN 0-471-80245-X. Vol. 2, Kinetic Theory, Edited by R. B. Bird, C. F. Curtiss, R. C. Armstrong and 0. Hassager, Wiley-Interscience, New York, 1987. pp. xxi + 437, Price 659.65. ISBN 0-471-80244-1
,”
Br. Polym. J.
,
20
(
3
), pp.
299
299
.10.1002/pi.4980200323
81.
Bernsdorf
,
J.
, and
Wang
,
D.
,
2009
, “
Non-Newtonian Blood Flow Simulation in Cerebral Aneurysms
,”
Comput. Math. Appl.
,
58
(
5
), pp.
1024
1029
.10.1016/j.camwa.2009.02.019
82.
Janela
,
J.
,
Moura
,
A.
, and
Sequeira
,
A.
,
2010
, “
A 3D Non-Newtonian Fluid-Structure Interaction Model for Blood Flow in Arteries
,”
J. Comput. Appl. Math.
,
234
(
9
), pp.
2783
2791
.10.1016/j.cam.2010.01.032
83.
Mikhal
,
J.
, and
Geurts
,
B. J.
,
2011
, “
Pulsatile Flow in Model Cerebral Aneurysms
,”
Procedia Comput. Sci.
,
4
, pp.
811
820
.10.1016/j.procs.2011.04.086
84.
Helthuis
,
J. H. G.
,
van Doormaal
,
T. P. C.
,
Amin-Hanjani
,
S.
,
Du
,
X. J.
,
Charbel
,
F. T.
,
Hillen
,
B.
, and
van der Zwan
,
A.
,
2020
, “
A Patient-Specific Cerebral Blood Flow Model
,”
J. Biomech.
,
98
, p.
109445
.10.1016/j.jbiomech.2019.109445
85.
Fuchs
,
A.
,
Berg
,
N.
, and Wittberg, L. P. 2020, "Blood Rheology Modeling Effects in Aortic Flow Simulations,”
Linne Flow Center
, Sweden.https://www.divaportal.org/smash/get/diva2:1456483/FULLT EXT01.pdf
86.
Quemada
,
D.
,
1978
, “
Rheology of Concentrated Disperse Systems II. A Model for Non-Newtonian Shear Viscosity in Steady Flows
,”
Rheol. Acta
,
17
(
6
), pp.
632
642
.10.1007/BF01522036
87.
Moore
,
S.
,
David
,
T.
,
Chase
,
J. G.
,
Arnold
,
J.
, and
Fink
,
J.
,
2006
, “
3D Models of Blood Flow in the Cerebral Vasculature
,”
J. Biomech.
,
39
(
8
), pp.
1454
1463
.10.1016/j.jbiomech.2005.04.005
88.
Venkatesan
,
J.
,
Sankar
,
D. S.
,
Hemalatha
,
K.
, and
Yatim
,
Y.
,
2013
, “
Mathematical Analysis of Casson Fluid Model for Blood Rheology in Stenosed Narrow Arteries
,”
J. Appl. Math.
,
2013
, pp.
1
11
.10.1155/2013/583809
89.
González
,
H. A.
, and
Moraga
,
N. O.
,
2005
, “
On Predicting Unsteady non-Newtonian Blood Flow
,”
Appl. Math. Comput.
,
170
(
2
), pp.
909
923
.10.1016/j.amc.2004.12.029
90.
Carreau
,
P. J.
,
1972
, “
Rheological Equations From Molecular Network Theories
,”
Trans. Soc. Rheol.
,
16
(
1
), pp.
99
127
.10.1122/1.549276
91.
Cross
,
M. M.
,
1965
, “
Rheology of Non-Newtonian Fluids: A New Flow Equation for Pseudoplastic Systems
,”
J. Colloid Sci.
,
20
(
5
), pp.
417
437
.10.1016/0095-8522(65)90022-X
92.
Gijsen
,
F. J. H.
,
Van De Vosse
,
F. N.
, and
Janssen
,
J. D.
,
1999
, “
The Influence of the non-Newtonian Properties of Blood on the Flow in Large Arteries: Steady Flow in a Carotid Bifurcation Model
,”
J. Biomech.
,
32
(
6
), pp.
601
608
.10.1016/S0021-9290(99)00015-9
93.
Arzani
,
A.
,
2018
, “
Accounting for Residence-Time in Blood Rheology Models: Do we Really Need Non-Newtonian Blood Flow Modelling in Large Arteries?
,”
J. R. Soc. Interface
,
15
(
146
), p.
20180486
.10.1098/rsif.2018.0486
94.
Brereton
,
M. G.
,
1978
, “
Dynamics of Polymeric Liquids
,”
Phys. Bull.
,
29
(
1
), pp.
26
26
.10.1088/0031-9112/29/1/038
95.
Xiang
,
J.
,
Tremmel
,
M.
,
Kolega
,
J.
,
Levy
,
E. I.
,
Natarajan
,
S. K.
, and
Meng
,
H.
,
2012
, “
Newtonian Viscosity Model Could Overestimate Wall Shear Stress in Intracranial Aneurysm Domes and Underestimate Rupture Risk
,”
J. NeuroIntervent. Surg.
,
4
(
5
), pp.
351
357
.10.1136/neurintsurg-2011-010089
96.
Bor-Seng-Shu
,
E.
,
Kita
,
W. S.
,
Figueiredo
,
E. G.
,
Paiva
,
W. S.
,
Fonoff
,
E. T.
,
Teixeira
,
M. J.
, and
Panerai
,
R. B.
,
2012
, “
Cerebral Hemodynamics: Concepts of Clinical Importance
,”
Arq. Neuro-Psiquiatr.
,
70
(
5
), pp.
357
365
.10.1590/S0004-282X2012000500010
97.
Zamir
,
M.
,
Moir
,
M. E.
,
Klassen
,
S. A.
,
Balestrini
,
C. S.
, and
Shoemaker
,
J. K.
,
2018
, “
Cerebrovascular Compliance Within the Rigid Confines of the Skull
,”
Front. Physiol.
,
9
(
July
), pp.
1
9
.10.3389/fphys.2018.00940
You do not currently have access to this content.