Abstract

While many studies have been conducted to delineate the role of gender in rear impact via experiments, clinical investigations, modeling, and epidemiological research, the effect of the added head mass on segmental motions has received less attention. The objective of the study is to determine the role of the head supported mass on the segmental motions and loads on the cervical spinal column from rear impact loading. The study used finite element modeling. The model was subjected to mesh convergence studies. It was validated with human cadaver experimental data by applying the rear impact acceleration pulse to the base of the spine. At all levels of the subaxial spinal column, a comparison was made between male and female spines and with and without the use of an army combat helmet. For this purpose, segmental motions, forces, and bending moments were used as biomechanical parameters. Results showed that female spines responded with increased motions than males, and the presence of a helmet increased motions and loads in males and female spines at all levels. Numerical data are given. Head supported mass affects spine responses at all levels. The present computational modeling study, from one geometry for the male spine and one geometry for the female spine (limitations are addressed in the paper), provided insights into the mechanisms of the internal load transfer with the presence of head supported mass, prevalent in certain civilian occupations and active-duty Service members in the military.

References

1.
Corrales
,
M. A.
, and
Cronin
,
D. S.
,
2021
, “
Sex, Age and Stature Affects Neck Biomechanical Responses in Frontal and Rear Impacts Assessed Using Finite Element Head and Neck Models
,”
Front. Bioeng. Biotechnol.
,
9
, p.
681134
.10.3389/fbioe.2021.681134
2.
Farrell
,
S. F.
,
Smith
,
A. D.
,
Hancock
,
M. J.
,
Webb
,
A. L.
, and
Sterling
,
M.
,
2019
, “
Cervical Spine Findings on MRI in People With Neck Pain Compared With Pain-Free Controls: A Systematic Review and Meta-Analysis
,”
J. Magn. Reson. Imaging
,
49
(
6
), pp.
1638
1654
.10.1002/jmri.26567
3.
Spitzer
,
W. O.
,
Skovron
,
M. L.
,
Salmi
,
L. R.
,
Cassidy
,
J. D.
,
Duranceau
,
J.
,
Suissa
,
S.
, and
Zeiss
,
E.
,
1995
, “
Scientific Monograph of the Quebec Task Force on Whiplash-Associated Disorders: Redefining “Whiplash” and Its Management
,”
Spine (Phila Pa 1976)
,
20
(
8 Suppl
), pp.
1S
73S
.https://pubmed.ncbi.nlm.nih.gov/7604354/
4.
Barnsley
,
L.
,
Lord
,
S.
, and
Bogduk
,
N.
,
1994
, “
Clinical Review - Whiplash Injury
,”
Pain
,
58
(
3
), pp.
283
307
.10.1016/0304-3959(94)90123-6
5.
Stemper
,
B. D.
,
Yoganandan
,
N.
, and
Pintar
,
F. A.
,
2004
, “
Gender- and Region-Dependent Local Facet Joint Kinematics in Rear Impact: Implications in Whiplash Injury
,”
Spine (Phila Pa 1976)
,
29
(
16
), pp.
1764
1771
.10.1097/01.BRS.0000134563.10718.A7
6.
Storvik
,
S. G.
,
Stemper
,
B. D.
,
Yoganandan
,
N.
, and
Pintar
,
F. A.
,
2009
, “
Population-Based Estimates of Whiplash Injury Using Nass Cds Data - Biomed 2009
,”
Biomed. Sci. Instrum.
,
45
, pp.
244
249
.https://pubmed.ncbi.nlm.nih.gov/19369770/
7.
Bogduk
,
N.
,
2000
, “
An Overview of Whiplash
,”
Frontiers in Whiplash Trauma: Clinical & Biomechanical
,
N.
Yoganandan
, and
F.
Pintar
eds., Vol.
38
,
IOS Press
, Amsterdam,
The Netherlands
, pp.
3
9
.
8.
Linder
,
A.
,
Olsén
,
S.
,
Eriksson
,
J.
,
Svensson
,
M. Y.
, and
Carlsson
,
A.
,
2012
, “
Influence of Gender, Height, Weight, Age, Seated Position and Collision Site Related to Neck Pain Symptoms in Rear End Impacts
,”
Proceedings of International Research Council on the Biomechanics of Injury Conference
,
IRCOBI
, Dublin, Ireland, Sept. 12–14, pp.
235
248
.http://www.ircobi.org/wordpress/downloads/irc12/pdf_files/31.pdf
9.
Stemper
,
B. D.
,
Kumaresan
,
S.
,
Yoganandan
,
N.
, and
Pintar
,
F. A.
,
2000
, “
Head-Neck Finite Element Model for Motor Vehicle Inertial Impact: Material Sensitivity Analysis
,”
Biomed. Sci. Instrum.
,
36
, pp.
331
335
.https://pubmed.ncbi.nlm.nih.gov/10834254/
10.
FMVSS
,
2001
,
Code of Federal Regulations: 571.208
,
US Government Printing Office
,
Washington, DC
, Standard No. FMVSS 208: 49.
11.
Kleinberger
,
M.
,
Sun
,
E.
,
Eppinger
,
R.
,
Kuppa
,
S.
, and
Saul
,
R.
,
1998
,
Development of Improved Injury Criteria for the Assessment of Advanced Automotive Restraint Systems
,
NHTSA
,
Washington, DC
.
12.
Ang
,
B. O.
, and
Kristoffersson
,
M.
,
2013
, “
Neck Muscle Activity in Fighter Pilots Wearing Night-Vision Equipment During Simulated Flight
,”
Aviat. Space Environ. Med.
,
84
(
2
), pp.
125
133
.10.3357/ASEM.3260.2013
13.
Choi
,
H.
,
Purushothaman
,
Y.
,
Baisden
,
J.
, and
Yoganandan
,
N.
,
2020
, “
Unique Biomechanical Signatures of Bryan, Prodisc C, and Prestige LP Cervical Disc Replacements: A Finite Element Modelling Study
,”
Eur. Spine J.
,
29
(
11
), pp.
2631
2639
.10.1007/s00586-019-06113-y
14.
Tumialan
,
L. M.
,
Ponton
,
R. P.
,
Cooper
,
A. N.
,
Gluf
,
W. M.
, and
Tomlin
,
J. M.
,
2019
, “
Rate of Return to Military Active Duty After Single and 2-Level Anterior Cervical Discectomy and Fusion: A 4-Year Retrospective Review
,”
Neurosurgery
,
85
(
1
), pp.
96
104
.10.1093/neuros/nyy230
15.
Tumialan
,
L. M.
,
Ponton
,
R. P.
,
Garvin
,
A.
, and
Gluf
,
W. M.
,
2010
, “
Arthroplasty in the Military: A Preliminary Experience With ProDisc-C and ProDisc-L
,”
Neurosurg. Focus
,
28
(
5
), p.
E18
.10.3171/2010.1.FOCUS102
16.
Osth
,
J.
,
Brolin
,
K.
,
Svensson
,
M. Y.
, and
Linder
,
A.
,
2016
, “
A Female Ligamentous Cervical Spine Finite Element Model Validated for Physiological Loads
,”
ASME J. Biomech. Eng.
,
138
(
6
), p.
061005
.10.1115/1.4032966
17.
Osth
,
J.
,
Mendoza-Vazquez
,
M.
,
Sato
,
F.
,
Svensson
,
M. Y.
,
Linder
,
A.
, and
Brolin
,
K.
,
2017
, “
A Female Head-Neck Model for Rear Impact Simulations
,”
J. Biomech.
,
51
(
1
), pp.
49
56
.10.1016/j.jbiomech.2016.11.066
18.
Mercer
,
S.
, and
Bogduk
,
N.
,
1999
, “
The Ligaments and Annulus Fibrosus of Human Adult Cervical Intervertebral Discs
,”
Spine (Phila Pa 1976)
,
24
(
7
), pp.
619
626
.10.1097/00007632-199904010-00002
19.
Tonetti
,
J.
,
Potton
,
L.
,
Riboud
,
R.
,
Peoc'h
,
M.
,
Passagia
,
J.-G.
, and
Chirossel
,
J.-P.
,
2005
, “
Morphological Cervical Disc Analysis Applied to Traumatic and Degenerative Lesions
,”
Surg. Radiol. Anat.
,
27
(
3
), pp.
192
200
.10.1007/s00276-004-0309-0
20.
Busscher
,
I.
,
Ploegmakers
,
J. J.
,
Verkerke
,
G. J.
, and
Veldhuizen
,
A. G.
,
2010
, “
Comparative Anatomical Dimensions of the Complete Human and Porcine Spine
,”
Eur. Spine J.
,
19
(
7
), pp.
1104
1114
.10.1007/s00586-010-1326-9
21.
Francis
,
C. C.
,
1955
, “
Variations in the Articular Facets of the Cervical Vertebrae
,”
Anat. Rec.
,
122
(
4
), pp.
589
602
.10.1002/ar.1091220408
22.
Katz
,
P. R.
,
Reynolds
,
H. M.
,
Foust
,
D. R.
, and
Baum
,
J. K.
,
1975
, “
Mid-Sagittal Dimensions of Cervical Vertebral Bodies
,”
Am. J. Phys. Anthropol.
,
43
(
3
), pp.
319
326
.10.1002/ajpa.1330430304
23.
Panjabi
,
M. M.
,
Duranceau
,
J.
,
Goel
,
V.
,
Oxland
,
T.
, and
Takata
,
K.
,
1991
, “
Cervical Human Vertebrae. Quantitative Three-Dimensional Anatomy of the Middle and Lower Regions
,”
Spine (Phila Pa 1976)
,
16
(
8
), pp.
861
869
.10.1097/00007632-199108000-00001
24.
Vasavada
,
A. N.
,
Danaraj
,
J.
, and
Siegmund
,
G. P.
,
2008
, “
Head and Neck Anthropometry, Vertebral Geometry and Neck Strength in Height-Matched Men and Women
,”
J. Biomech.
,
41
(
1
), pp.
114
121
.10.1016/j.jbiomech.2007.07.007
25.
Nissan
,
M.
, and
Gilad
,
I.
,
1984
, “
The Cervical and Lumbar Vertebrae–an Anthropometric Model
,”
Eng. Med.
,
13
(
3
), pp.
111
114
.10.1243/EMED_JOUR_1984_013_030_02
26.
Cassidy
,
J. J.
,
Hiltner
,
A.
, and
Baer
,
E.
,
1989
, “
Hierarchical Structure of the Intervertebral Disc
,”
Connect. Tissue Res.
,
23
(
1
), pp.
75
88
.10.3109/03008208909103905
27.
Holzapfel
,
G. A.
,
Schulze-Bauer
,
C. A.
,
Feigl
,
G.
, and
Regitnig
,
P.
,
2005
, “
Single Lamellar Mechanics of the Human Lumbar Anulus Fibrosus
,”
Biomech. Model Mechanobiol.
,
3
(
3
), pp.
125
140
.10.1007/s10237-004-0053-8
28.
Iatridis
,
J. C.
,
Setton
,
L. A.
,
Foster
,
R. J.
,
Rawlins
,
B. A.
,
Weidenbaum
,
M.
, and
Mow
,
V. C.
,
1998
, “
Degeneration Affects the Anisotropic and Nonlinear Behaviors of Human Anulus Fibrosus in Compression
,”
J. Biomech.
,
31
(
6
), pp.
535
544
.10.1016/S0021-9290(98)00046-3
29.
Kopperdahl
,
D. L.
, and
Keaveny
,
T. M.
,
1998
, “
Yield Strain Behavior of Trabecular Bone
,”
J. Biomech.
,
31
(
7
), pp.
601
608
.10.1016/S0021-9290(98)00057-8
30.
Mattucci
,
S. F.
,
Moulton
,
J. A.
,
Chandrashekar
,
N.
, and
Cronin
,
D. S.
,
2012
, “
Strain Rate Dependent Properties of Younger Human Cervical Spine Ligaments
,”
J. Mech. Behav. Biomed. Mater.
,
10
(
6
), pp.
216
226
.10.1016/j.jmbbm.2012.02.004
31.
Panzer
,
M. B.
, and
Cronin
,
D. S.
,
2009
, “
C4-C5 Segment Finite Element Model Development, Validation, and Load-Sharing Investigation
,”
J. Biomech.
,
42
(
4
), pp.
480
490
.10.1016/j.jbiomech.2008.11.036
32.
Reilly
,
D. T.
, and
Burstein
,
A. H.
,
1975
, “
The Elastic and Ultimate Properties of Compact Bone Tissue
,”
J. Biomech.
,
8
(
6
), pp.
393
405
.10.1016/0021-9290(75)90075-5
33.
Yamada
,
H.
,
1970
,
Strength of Biological Materials
,
Williams and Wilkins
,
Baltimore, MD
.
34.
Stemper
,
B. D.
,
Yoganandan
,
N.
, and
Pintar
,
F. A.
,
2004
, “
Response Corridors of the Human Head-Neck Complex in Rear Impact
,”
Annu. Proc. Assoc. Adv. Automot. Med.
,
48
, pp.
149
163
.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3217421/
35.
Cusick
,
J. F.
,
Pintar
,
F. A.
, and
Yoganandan
,
N.
,
2001
, “
Whiplash Syndrome
,”
Spine
,
26
(
11
), pp.
1252
1258
.10.1097/00007632-200106010-00015
You do not currently have access to this content.