Abstract

The aim of this is to evaluate the biomechanical performance of double-level semirigid pedicle screw fixation and artificial intervertebral disc replacement in lumbar spine. Ti6Al4V and CFR-PEEK material are used for pedicle screw fixation and artificial disc replacement. In the present study, pedicle screw fixation and artificial intervertebral disc replacement are carried out between L3-L4-L5 regions under the application of moment 6,8,10 Nm and range of motion is compared during flexion, extension, and right-left lateral bending. Two-level pedicle screw fusion and total disc replacement are developed in the L3-L4-L5 of the lumber spine vertebrae. Carbon fiber reinforced (CFR-PEEK) and ultra-high molecular weight polyethylene (UHMWPE) are considered for the spinal fusion and the core part of the artificial disc respectively. Afterwards, applying the finite element analysis, it is detected that CFR-PEEK rod is able to increase range of motion at the implanted level in comparison to Ti6Al4V rod for both flexion–extension and lateral bending. In case of artificial intervertebral disc replacement hypermobility was observed. Hence, it is significant that rod material with CFR-PEEK is a better alternative for the treatment of degenerative diseases.

References

1.
Gaines
,
R. W.
, Jr.
,
2000
, “
The Use of Pedicle-Screw Internal Fixation for the Operative Treatment of Spinal Disorders
,”
J. Bone Jt. Surg. Am.
,
82
(
10
), pp.
1458
1476
.10.2106/00004623-200010000-00013
2.
Mirza
,
A. K.
,
Alvi
,
M. A.
,
Naylor
,
R. M.
,
Kerezoudis
,
P.
,
Krauss
,
W. E.
,
Clarke
,
M. J.
,
Shepherd
,
D. L.
,
Nassr
,
A.
,
DeMartino
,
R. R.
, and
Bydon
,
M.
,
2017
, “
Management of Major Vascular Injury During Pedicle Screw Instrumentation of Thoracolumbar Spine
,”
Clin. Neurol. Neurosurg.
,
163
, pp.
53
59
.10.1016/j.clineuro.2017.10.011
3.
Murtagh
,
R. D.
,
Quencer
,
R. M.
,
Castellvi
,
A. E.
, and
Yue
,
J. J.
,
2011
, “
New Techniques in Lumbar Spinal Instrumentation: What the Radiologist Needs to Know
,”
Radiology
,
260
(
2
), pp.
317
330
.10.1148/radiol.11101104
4.
Defino
,
H.
,
Galbusera
,
F.
, and
Wilke
,
H. J.
, “
Wheeless' Textbook of Orthopaedics
,” Lumbar Spine Online Textbook, Section 11, Chapter 9: Pedicle Screw Fixation and Design, Data Trace Publishing Company, Towson, MD, accessed Oct. 11, 2022, https://www.wheelessonline.com/ISSLS/section-11-chapter-9-pedicle-screw-fixation-and-design/
5.
Boos
,
N.
, and
Webb
,
J. K.
,
1997
, “
Pedicle Screw Fixation in Spinal Disorders: A European View
,”
Eur. Spine J.
,
6
(
1
), pp.
2
18
.10.1007/BF01676569
6.
Bai
,
J. Y.
,
Zhang
,
W.
,
An
,
J. L.
,
Sun
,
Y. P.
,
Ding
,
W. Y.
, and
Shen
,
Y.
,
2016
, “
True Anteroposterior View Pedicle Screw Insertion Technique
,”
Ther. Clin. Risk Manag.
,
12
, p.
1039
.
7.
Abumi
,
K.
,
Shono
,
Y.
,
Ito
,
M.
,
Taneichi
,
H.
,
Kotani
,
Y.
, and
Kaneda
,
K.
,
2000
, “
Complications of Pedicle Screw Fixation in Reconstructive Surgery of the Cervical Spine
,”
Spine
,
25
(
8
), pp.
962
969
.10.1097/00007632-200004150-00011
8.
Costa
,
F.
,
Villa
,
T.
,
Anasetti
,
F.
,
Tomei
,
M.
,
Ortolina
,
A.
,
Cardia
,
A.
,
La Barbera
,
L.
,
Fornari
,
M.
, and
Galbusera
,
F.
,
2013
, “
Primary Stability of Pedicle Screws Depends on the Screw Positioning and Alignment
,”
Spine J.
,
13
(
12
), pp.
1934
1939
.10.1016/j.spinee.2013.03.046
9.
Varghese
,
V.
,
Kumar
,
G. S.
, and
Krishnan
,
V.
,
2017
, “
Effect of Various Factors on Pull Out Strength of Pedicle Screw in Normal and Osteoporotic Cancellous Bone Models
,”
Med. Eng. Phys.
,
40
, pp.
28
38
.10.1016/j.medengphy.2016.11.012
10.
Barrey
,
C.
,
Ene
,
B.
,
Louis-Tisserand
,
G.
,
Montagna
,
P.
,
Perrin
,
G.
, and
Simon
,
E.
,
2013
, “
Vascular Anatomy in the Lumbar Spine Investigated by Three-Dimensional Computed Tomography Angiography: The Concept of Vascular Window
,”
World Neurosurg.
,
79
(
5–6
), pp.
784
791
.10.1016/j.wneu.2012.03.019
11.
Debernardi
,
A.
,
D'Aliberti
,
G.
,
Talamonti
,
G.
,
Villa
,
F.
,
Piparo
,
M.
, and
Cenzato
,
M.
,
2013
, “
Traumatic (Type II) Odontoid Fracture With Transverse Atlantal Ligament Injury: A Controversial Event
,”
World Neurosurg.
,
79
(
5–6
), pp.
779
783
.10.1016/j.wneu.2012.01.055
12.
Klineberg
,
E.
,
Schwab
,
F.
,
Smith
,
J. S.
,
Gupta
,
M. C.
,
Lafage
,
V.
, and
Bess
,
S.
,
2013
, “
Sagittal Spinal Pelvic Alignment
,”
Neurosurg. Clin.
,
24
(
2
), pp.
157
162
.10.1016/j.nec.2012.12.003
13.
Hamilton
,
D. K.
,
Buza
,
J. A.
,
Passias
,
P.
,
Jalai
,
C.
,
Kim
,
H. J.
,
Ailon
,
T.
,
Gupta
,
M.
, et al.,
2017
, “
The Fate of Patients With Adult Spinal Deformity Incurring Rod Fracture After Thoracolumbar Fusion
,”
World Neurosurg
.,
106
, pp.
905
911
.10.1016/j.wneu.2017.07.061
14.
Esses
,
S. I.
,
Sachs
,
B. L.
, and
Dreyzin
,
V.
,
1993
, “
Complications Associated With the Technique of Pedicle Screw Fixation a Selected Survey of ABS Members
,”
Spine
,
18
(
15
), pp.
2231
2239
.10.1097/00007632-199311000-00015
15.
Blumenthal
,
S.
, and
Gill
,
K.
,
1993
, “
Complications of the Wiltse Pedicle Screw Fixation System
,”
Spine
,
18
(
13
), pp.
1867
1871
.10.1097/00007632-199310000-00024
16.
Hicks
,
J. M.
,
Singla
,
A.
,
Shen
,
F. H.
, and
Arlet
,
V.
,
2010
, “
Complications of Pedicle Screw Fixation in Scoliosis Surgery: A Systematic Review
,”
Spine
,
35
(
11
), pp.
E465
E470
.10.1097/BRS.0b013e3181d1021a
17.
Mobbs
,
R. J.
,
Sivabalan
,
P.
, and
Li
,
J.
,
2011
, “
Technique, Challenges and Indications for Percutaneous Pedicle Screw Fixation
,”
J. Clin. Neurosci.
,
18
(
6
), pp.
741
749
.10.1016/j.jocn.2010.09.019
18.
Ouldyerou
,
A.
,
Mehboob
,
H.
,
Merdji
,
A.
,
Aminallah
,
L.
,
Mehboob
,
A.
, and
Mukdadi
,
O. M.
,
2022
, “
Biomechanical Analysis of Printable Functionally Graded Material (FGM) Dental Implants for Different Bone Densities
,”
Comput. Bio. Med.
,
150
, p.
106111
.10.1016/j.compbiomed.2022.106111
19.
Ouldyerou
,
A.
,
Aminallah
,
L.
,
Merdji
,
A.
,
Mehboob
,
A.
, and
Mehboob
,
H.
,
2022
, “
Finite Element Analyses of Porous Dental Implant Designs Based on 3D Printing Concept to Evaluate Biomechanical Behaviors of Healthy and Osteoporotic Bones
,”
Mech. Adv. Mater. Struct.
, pp.
1
13
.10.1080/15376494.2022.2053908
20.
Rana
,
M.
,
Chaudhuri
,
A.
,
Biswas
,
J. K.
,
Karim
,
S. I.
,
Datta
,
P.
,
Karmakar
,
S. K.
, and
Roychowdhury
,
A.
,
2021
, “
Design of Patient Specific Bone Stiffness Mimicking Scaffold
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
,
235
(
12
), pp.
1453
1462
.10.1177/09544119211030715
21.
Biswas
,
J. K.
,
Malas
,
A.
,
Majumdar
,
S.
, and
Rana
,
M.
,
2022
, “
A Comparative Finite Element Analysis of Artificial Intervertebral Disc Replacement and Pedicle Screw Fixation of the Lumbar Spine
,”
Comput. Methods Biomech. Biomed. Eng.
,
25
(
16
), pp.
1812
1820
.10.1080/10255842.2022.2039130
22.
Ouldyerou
,
A.
,
Merdji
,
A.
,
Aminallah
,
L.
,
Roy
,
S.
,
Mehboob
,
H.
, and
Özcan
,
M.
,
2022
, “
Biomechanical Performance of Ti-PEEK Dental Implants in Bone: An in-Silico Analysis
,”
J. Mech. Behav. Biomed Mater.
,
134
, p.
105422
.10.1016/j.jmbbm.2022.105422
23.
Oikonomidis
,
S.
,
Greven
,
J.
,
Bredow
,
J.
,
Eh
,
M.
,
Prescher
,
A.
,
Fischer
,
H.
,
Thüring
,
J.
,
Eysel
,
P.
,
Hildebrand
,
F.
,
Kobbe
,
P.
,
Scheyerer
,
M. J.
, and
Herren
,
C.
,
2020
, “
Biomechanical Effects of Posterior Pedicle Screw-Based Instrumentation Using Titanium Versus Carbon Fiber Reinforced PEEK in an Osteoporotic Spine Human Cadaver Model
,”
Clin. Biomech.
,
80
, p.
105153
.10.1016/j.clinbiomech.2020.105153
24.
Tedesco
,
G.
,
Gasbarrini
,
A.
,
Bandiera
,
S.
,
Ghermandi
,
R.
, and
Boriani
,
S.
,
2017
, “
Composite PEEK/Carbon Fiber Implants Can Increase the Effectiveness of Radiotherapy in the Management of Spine Tumors
,”
J. Spine Surg.
,
3
(
3
), pp.
323
329
.10.21037/jss.2017.06.20
25.
Gupta
,
Y.
,
Iyer
,
R.
,
Dommeti
,
V. K.
,
Nutu
,
E.
,
Rana
,
M.
,
Merdji
,
A.
,
Biswas
,
J. K.
, and
Roy
,
S.
,
2021
, “
Design of Dental Implant Using Design of Experiment and Topology Optimization: A Finite Element Analysis Study
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
,
235
(
2
), pp.
157
166
.10.1177/0954411920967146
26.
Biswas
,
J. K.
,
Kalita
,
K.
, and
Roychowdhury
,
A.
,
2022
, “
Symbolic Regression Metamodel-Based Optimal Design of Patient-Specific Spinal Implant (Pedicle Screw Fixation)
,”
Eng. Comput.
,
38
(
2
), pp.
999
1014
.10.1007/s00366-020-01090-z
27.
Ouldyerou
,
A.
,
Merdji
,
A.
,
Aminallah
,
L.
,
Msomi
,
V.
,
Chong
,
P. L.
, and
Roy
,
S.
,
2022
, “
Biomechanical Evaluation of Marginal Bone Loss in the Surrounding Bone Under Different Loading: 3D FE Study
,”
Int. J. Multiscale Comp. Eng.
,
20
(
4
), pp.
43
56
.10.1615/IntJMultCompEng.2022043707
28.
Kang
,
K. T.
,
Koh
,
Y. G.
,
Son
,
J.
,
Yeom
,
J. S.
,
Park
,
J. H.
, and
Kim
,
H. J.
,
2017
, “
Biomechanical Evaluation of Pedicle Screw Fixation System in Spinal Adjacent Levels Using Polyetheretherketone, Carbon-Fiber-Reinforced Polyetheretherketone, and Traditional Titanium as Rod Materials
,”
Compos. Part B: Eng.
,
130
, pp.
248
256
.10.1016/j.compositesb.2017.07.052
29.
Kurtz
,
S. M.
, and
Devine
,
J. N.
,
2007
, “
PEEK Biomaterials in Trauma, Orthopedic, and Spinal Implants
,”
Biomaterials
,
28
(
32
), pp.
4845
4869
.10.1016/j.biomaterials.2007.07.013
30.
Lindtner
,
R. A.
,
Schmid
,
R.
,
Nydegger
,
T.
,
Konschake
,
M.
, and
Schmoelz
,
W.
,
2018
, “
Pedicle Screw Anchorage of Carbon Fiber-Reinforced PEEK Screws Under Cyclic Loading
,”
Eur. Spine J.
,
27
(
8
), pp.
1775
1784
.10.1007/s00586-018-5538-8
31.
Uri
,
O.
,
Folman
,
Y.
,
Laufer
,
G.
, and
Behrbalk
,
E.
,
2020
, “
A Novel Spine Fixation System Made Entirely of Carbon-Fiber-Reinforced PEEK Composite: An In Vitro Mechanical Evaluation
,”
Adv. Orthop.
, 2020, Article No. 4796136.10.1155/2020/4796136
32.
Nevelsky
,
A.
,
Borzov
,
E.
,
Daniel
,
S.
, and
Bar‐Deroma
,
R.
,
2017
, “
Perturbation Effects of the Carbon Fiber‐PEEK Screws on Radiotherapy Dose Distribution
,”
J. App. Clin. Med. Phys.
,
18
(
2
), pp.
62
68
.10.1002/acm2.12046
33.
Schliemann
,
B.
,
Hartensuer
,
R.
,
Koch
,
T.
,
Theisen
,
C.
,
Raschke
,
M. J.
,
Kösters
,
C.
, and
Weimann
,
A.
,
2015
, “
Treatment of Proximal Humerus Fractures With a CFR-PEEK Plate: 2-Year Results of a Prospective Study and Comparison to Fixation With a Conventional Locking Plate
,”
J. Shoulder Elbow Surg.
,
24
(
8
), pp.
1282
1288
.10.1016/j.jse.2014.12.028
34.
Cofano
,
F.
,
Di Perna
,
G.
,
Monticelli
,
M.
,
Marengo
,
N.
,
Ajello
,
M.
,
Mammi
,
M.
,
Vercelli
,
G.
,
Petrone
,
S.
,
Tartara
,
F.
,
Zenga
,
F.
,
Lanotte
,
M.
, and
Garbossa
,
D.
,
2020
, “
Carbon Fiber Reinforced versus Titanium Implants for Fixation in Spinal Metastases: A Comparative Clinical Study About Safety and Effectiveness of the New “Carbon-Strategy”
,”
J. Clin. Neurosci.
,
75
, pp.
106
111
.10.1016/j.jocn.2020.03.013
35.
Kiyani
,
S.
,
Taheri-Behrooz
,
F.
, and
Asadi
,
A.
,
2021
, “
Analytical and Finite Element Analysis of Shape Memory Polymer for Use in Lumbar Total Disc Replacement
,”
J. Mech. Behav. Biomed. Mater.
,
122
, p.
104689
.10.1016/j.jmbbm.2021.104689
36.
Khalaf
,
K.
, and
Nikkhoo
,
M.
,
2021
, “
Comparative Biomechanical Analysis of Rigid vs. Flexible Fixation Devices for the Lumbar Spine: A Geometrically Patient-Specific Poroelastic Finite Element Study
,”
Comput. Methods Programs Biomed.
,
212
, p.
106481
.10.1016/j.cmpb.2021.106481
37.
Biswas
,
J. K.
,
Rana
,
M.
,
Malas
,
A.
,
Roy
,
S.
,
Chatterjee
,
S.
, and
Choudhury
,
S.
,
2022
, “
Effect of Single and Multilevel Artificial Inter-Vertebral Disc Replacement in Lumbar Spine: A Finite Element Study
,”
Int. J. Artif. Organs
,
45
(
2
), pp.
193
199
.10.1177/03913988211001875
38.
Biswas
,
J. K.
,
Roy
,
S.
,
Majumder
,
S.
,
Karmakar
,
S. K.
,
Saha
,
S.
, and
Roychowdhury
,
A.
,
2018
, “
Artificial Intervertebral Disc Replacement to Provide Dynamic Stability to the Lumbar Spine: A Finite Element Study
,”
J. Long-Term Effects Med. Implants
,
28
(
2
), pp.
101
109
.10.1615/JLongTermEffMedImplants.2018025397
39.
Biswas
,
J. K.
,
Mondal
,
N.
,
Choudhury
,
S.
,
Malas
,
A.
, and
Rana
,
M.
,
2022
, “
A Finite Element Study and Mathematical Modeling of Lumbar Pedicle Screw Along With Various Design Parameters
,”
J. Ortho. Sci.
, epub.10.1016/j.jos.2022.08.008
40.
Biswas
,
J. K.
,
Malas
,
A.
, and
Rana
,
M.
,
2022
, “
A Finite Element Analysis of Semi-Rigid Single and Two Level Pedicle Screw-Rod Fixation in Lumbar Spine
,”
J. Mech. Med. Bio.
, 22(8), p.
2350003
.10.1142/S0219519423500033
41.
Biswas
,
J. K.
,
Rana
,
M.
,
Majumder
,
S.
,
Karmakar
,
S. K.
, and
Roychowdhury
,
A.
,
2018
, “
Effect of Two-Level Pedicle-Screw Fixation With Different Rod Materials on Lumbar Spine: A Finite Element Study
,”
J. Ortho. Sci.
,
23
(
2
), pp.
258
265
.10.1016/j.jos.2017.10.009
You do not currently have access to this content.