Abstract

Breastfeeding involves a complex coordination of swallowing, breathing, and sucking, with the infant's sucking proficiency being crucial for adequate nutrient intake. However, real-time assessment of milk intake is difficult, and issues with sucking often become apparent after the infant shows signs of nutrient deficiency. Traditional assessments by clinicians rely on the expertise and subjective judgment of healthcare professionals, enabling personalized evaluations. In this research, we introduce a novel approach to identifying sucking patterns by leveraging data collected from infants during breastfeeding sessions. This method utilizes artificial nipple-based sensors to capture the tongue forces exerted by infants, generating valuable clinical data. In the analysis of the collected time-series data, we applied machine-learned computational modeling (MLCM) algorithms to extract pertinent features and identify distinctive sucking patterns. The best-performing model demonstrated an accuracy of 90%, an 80% recall score, a perfect 100% precision score, a 0.90 f1-score, and an area under the curve (AUC) of 0.80. The proposed classification system has the potential to serve as a reliable decision-support tool for clinicians, offering valuable insights into infants' sucking behaviors. By integrating machine learning (ML)-based computational modeling into clinical practice, we aim to enhance the early identification of unhealthy sucking patterns, allowing for timely interventions and pro-active healthcare management.

References

1.
Woolridge
,
M. W.
,
1986
, “
The ‘Anatomy’ of Infant Sucking
,”
Midwifery
,
2
(
4
), pp.
164
171
.10.1016/S0266-6138(86)80041-9
2.
McClellan
,
H. L.
,
Sakalidis
,
V. S.
,
Hepworth
,
A. R.
,
Hartmann
,
P. E.
, and
Geddes
,
D. T.
,
2010
, “
Validation of Nipple Diameter and Tongue Movement Measurements With B-Mode Ultrasound During Breastfeeding
,”
Ultrasound Med. Biol.
,
36
(
11
), pp.
1797
1807
.10.1016/j.ultrasmedbio.2010.08.005
3.
Burton
,
P.
,
Deng
,
J.
,
McDonald
,
D.
, and
Fewtrell
,
M. S.
,
2013
, “
Real-Time 3D Ultrasound Imaging of Infant Tongue Movements During Breast-Feeding
,”
Early Hum. Dev.
,
89
(
9
), pp.
635
641
.10.1016/j.earlhumdev.2013.04.009
4.
Geddes
,
D. T.
,
Kent
,
J. C.
,
Mitoulas
,
L. R.
, and
Hartmann
,
P. E.
,
2008
, “
Tongue Movement and Intra-Oral Vacuum in Breastfeeding Infants
,”
Early Hum. Dev.
,
84
(
7
), pp.
471
477
.10.1016/j.earlhumdev.2007.12.008
5.
Stone
,
M.
, and
Shawker
,
T. H.
,
1986
, “
An Ultrasound Examination of Tongue Movement During Swallowing
,”
Dysphagia
,
1
(
2
), pp.
78
83
.10.1007/BF02407118
6.
Geddes
,
D. T.
, and
Sakalidis
,
V. S.
,
2016
, “
Ultrasound Imaging of Breastfeeding–a Window to the Inside: Methodology, Normal Appearances, and Application
,”
J. Hum. Lactation
,
32
(
2
), pp.
340
349
.10.1177/0890334415626152
7.
Alatalo
,
D.
,
Jiang
,
L.
,
Geddes
,
D.
, and
Hassanipour
,
F.
,
2020
, “
Nipple Deformation and Peripheral Pressure on the Areola During Breastfeeding
,”
ASME J. Biomech. Eng.
,
142
(
1
), p.
011004
.10.1115/1.4043665
8.
Jiang
,
L.
,
Varnousfaderani
,
N. S.
,
Hallac
,
R.
,
Kane
,
A.
,
Tadesse
,
Y.
, and
Hassanipour
,
F.
,
2022
, “
Bio-Inspired Breastfeeding Simulator Integrated With Software Interface and Feedback Controls
,”
IEEE Rob. Autom. Lett.
,
7
(
2
), pp.
1118
1125
.10.1109/LRA.2021.3134721
9.
Elad
,
D.
,
Kozlovsky
,
P.
,
Blum
,
O.
,
Laine
,
A. F.
,
Po
,
M. J.
,
Botzer
,
E.
,
Dollberg
,
S.
,
Zelicovich
,
M.
, and
Ben Sira
,
L.
,
2014
, “
Biomechanics of Milk Extraction During Breast-Feeding
,”
Proc. Natl. Acad. Sci.
,
111
(
14
), pp.
5230
5235
.10.1073/pnas.1319798111
10.
Libbrecht
,
M. W.
, and
Noble
,
W. S.
,
2015
, “
Machine Learning Applications in Genetics and Genomics
,”
Nat. Rev. Genet.
,
16
(
6
), pp.
321
332
.10.1038/nrg3920
11.
Erickson
,
B. J.
,
Korfiatis
,
P.
,
Akkus
,
Z.
, and
Kline
,
T. L.
,
2017
, “
Machine Learning for Medical Imaging
,”
Radiographics
,
37
(
2
), pp.
505
515
.10.1148/rg.2017160130
12.
Topol
,
E. J.
,
2019
, “
High-Performance Medicine: The Convergence of Human and Artificial Intelligence
,”
Nat. Med.
,
25
(
1
), pp.
44
56
.10.1038/s41591-018-0300-7
13.
Truong
,
P.
,
Walsh
,
E.
,
Scott
,
V. P.
,
Leff
,
M.
,
Chen
,
A.
, and
Friend
,
J.
,
2024
, “
Application of Statistical Analysis and Machine Learning to Identify Infants' Abnormal Suckling Behavior
,”
IEEE J. Transl. Eng. Health Med.
,
12
, pp.
435
447
.10.1109/JTEHM.2024.3390589
14.
D'Mello
,
S. K.
,
Tay
,
L.
, and
Southwell
,
R.
,
2022
, “
Psychological Measurement in the Information Age: Machine-Learned Computational Models
,”
Curr. Dir. Psychol. Sci.
,
31
(
1
), pp.
76
87
.10.1177/09637214211056906
15.
D'Mello
,
S. K.
,
Southwell
,
R.
, and
Gregg
,
J.
,
2020
, “
Machine-Learned Computational Models Can Enhance the Study of Text and Discourse: A Case Study Using Eye Tracking to Model Reading Comprehension
,”
Discourse Processes
,
57
(
5–6
), pp.
420
440
.10.1080/0163853X.2020.1739600
16.
Nayyar
,
A.
,
Gadhavi
,
L.
, and
Zaman
,
N.
,
2021
, “
Machine Learning in Healthcare: Review, Opportunities and Challenges
,”
Machine Learning and the Internet of Medical Things in Healthcare
, pp.
23
45
.10.1016/B978-0-12-821229-5.00011-2
17.
Hoodbhoy
,
Z.
,
Masroor Jeelani
,
S.
,
Aziz
,
A.
,
Habib
,
M. I.
,
Iqbal
,
B.
,
Akmal
,
W.
,
Siddiqui
,
K.
,
Hasan
,
B.
,
Leeflang
,
M.
, and
Das
,
J. K.
,
2021
, “
Machine Learning for Child and Adolescent Health: A Systematic Review
,”
Pediatrics
,
147
(
1
), p.
e2020011833
.10.1542/peds.2020-011833
18.
Baker
,
S.
, and
Kandasamy
,
Y.
,
2023
, “
Machine Learning for Understanding and Predicting Neurodevelopmental Outcomes in Premature Infants: A Systematic Review
,”
Pediatr. Res.
,
93
(
2
), pp.
293
299
.10.1038/s41390-022-02120-w
19.
Sharifi-Heris
,
Z.
,
Laitala
,
J.
,
Airola
,
A.
,
Rahmani
,
A. M.
, and
Bender
,
M.
,
2022
, “
Machine Learning Approach for Preterm Birth Prediction Using Health Records: Systematic Review
,”
JMIR Med. Inf.
,
10
(
4
), p.
e33875
.10.2196/33875
20.
Li
,
Y.
,
Mache
,
M. A.
, and
Todd
,
T. A.
,
2020
, “
Automated Identification of Postural Control for Children With Autism Spectrum Disorder Using a Machine Learning Approach
,”
J. Biomech.
,
113
, p.
110073
.10.1016/j.jbiomech.2020.110073
21.
Oliver-Roig
,
A.
,
Rico-Juan
,
J. R.
,
Richart-Martínez
,
M.
, and
Cabrero-García
,
J.
,
2022
, “
Predicting Exclusive Breastfeeding in Maternity Wards Using Machine Learning Techniques
,”
Comput. Methods Prog. Biomed.
,
221
, p.
106837
.10.1016/j.cmpb.2022.106837
22.
Elgersma
,
K. M.
,
Wolfson
,
J.
,
Fulkerson
,
J. A.
,
Georgieff
,
M. K.
,
Looman
,
W. S.
,
Spatz
,
D. L.
,
Shah
,
K. M.
,
Uzark
,
K.
, and
McKechnie
,
A. C.
,
2023
, “
Predictors of Human Milk Feeding and Direct Breastfeeding for Infants With Single Ventricle Congenital Heart Disease: Machine Learning Analysis of the National Pediatric Cardiology Quality Improvement Collaborative Registry
,”
J. Pediatr.
,
261
, p.
113562
.10.1016/j.jpeds.2023.113562
23.
Oyebode
,
O.
,
Lomotey
,
R.
, and
Orji
,
R.
,
2021
, “
I Tried to Breastfeed but…: Exploring Factors Influencing Breastfeeding Behaviours Based on Tweets Using Machine Learning and Thematic Analysis
,”
IEEE Access
,
9
, pp.
61074
61089
.10.1109/ACCESS.2021.3073079
24.
Nishi
,
E.
,
Okuda
,
R.
,
Hiraoka
,
K.
, and
Rikoh
,
K.
,
2021
, “
Measurement of Force Applied by Infant Tongue to Three Types of Artificial Nipple: Investigation of Dynamic Actions in Relation to the Shape and Size of the Artificial Nipple
,”
IEEJ Trans. Electr. Electron. Eng.
,
16
(
8
), pp.
1093
1098
.10.1002/tee.23406
25.
Nishi
,
E.
,
Nagamatsu
,
Y.
, and
Niikawa
,
T.
,
2016
, “
Measurement of Force Applied by Infant Tongue to the Nipple During Sucking and Investigation of the Mechanism of Tongue Movement
,” 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (
EMBC
), Orlando, FL, Aug. 16–20, pp.
2042
2045
.10.1109/EMBC.2016.7591128
26.
Sriraman
,
N. K.
,
2017
, “
The Nuts and Bolts of Breastfeeding: Anatomy and Physiology of Lactation
,”
Curr. Probl. Pediatr. Adolesc. Health Care
,
47
(
12
), pp.
305
310
.10.1016/j.cppeds.2017.10.001
27.
Begg
,
R.
, and
Kamruzzaman
,
J.
,
2005
, “
A Machine Learning Approach for Automated Recognition of Movement Patterns Using Basic, Kinetic and Kinematic Gait Data
,”
J. Biomech.
,
38
(
3
), pp.
401
408
.10.1016/j.jbiomech.2004.05.002
28.
Halilaj
,
E.
,
Rajagopal
,
A.
,
Fiterau
,
M.
,
Hicks
,
J. L.
,
Hastie
,
T. J.
, and
Delp
,
S. L.
,
2018
, “
Machine Learning in Human Movement Biomechanics: Best Practices, Common Pitfalls, and New Opportunities
,”
J. Biomech.
,
81
, pp.
1
11
.10.1016/j.jbiomech.2018.09.009
29.
Yoo
,
J.-H.
,
Hwang
,
D.
, and
Nixon
,
M. S.
,
2005
, “
Gender Classification in Human Gait Using Support Vector Machine
,”
Advanced Concepts for Intelligent Vision Systems
,
J.
Blanc-Talon
,
W.
Philips
,
D.
Popescu
, and
P.
Scheunders
, eds.,
Springer
,
Berlin, Heidelberg
, pp.
138
145
.
30.
Abadi
,
M.
,
Agarwal
,
A.
,
Barham
,
P.
,
Brevdo
,
E.
,
Chen
,
Z.
,
Citro
,
C.
,
Corrado
,
G. S.
, et al.,
2015
, “
TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems
,” accessed Sept. 18, 2024, https://www.tensorflow.org/
31.
Glorot
,
X.
,
Bordes
,
A.
, and
Bengio
,
Y.
,
2011
, “
Deep Sparse Rectifier Neural Networks
,”
Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, JMLR Workshop and Conference Proceedings
, Fort Lauderdale, FL, Apr. 11–13, pp.
315
323
.https://proceedings.mlr.press/v15/glorot11a/glorot11a.pdf
32.
Goodfellow
,
I.
,
Bengio
,
Y.
, and
Courville
,
A.
,
2016
,
Deep Learning
,
MIT Press
, Cambridge, MA.
33.
Kingma
,
D. P.
, and
Ba
,
J.
,
2017
, “
Adam: A Method for Stochastic Optimization
,”
arXiv: 1412.6980
.10.48550/arXiv.1412.6980
34.
Hu
,
B.
,
Dixon
,
P.
,
Jacobs
,
J.
,
Dennerlein
,
J.
, and
Schiffman
,
J.
,
2018
, “
Machine Learning Algorithms Based on Signals From a Single Wearable Inertial Sensor Can Detect Surface-and Age-Related Differences in Walking
,”
J. Biomech.
,
71
, pp.
37
42
.10.1016/j.jbiomech.2018.01.005
You do not currently have access to this content.