The potential of single-walled carbon nanotubes as nanosensors in detection of noble gases via a vibration analysis is investigated using molecular dynamics simulations. An index based on frequency shifts of the nanotubes in an environment of noble gas atoms is defined and examined to measure the sensitivity of the sensors. The effects of density of gas atoms on the tube sensors, the diameter and length of the tubes, and the type of restrained boundary of the tubes on the sensitivity are studied. The simulation results indicate that the resolution of a sensor made of a (8, 8) carbon nanotube with a length of 4.92 nm can achieve an order of and the sensitivity can be enhanced by nanotubes with smaller sizes and stiffer boundary conditions.
1.
Kroto
, H. W.
, Heath
, J. R.
, O’Brien
, S. C.
, Curl
, R. F.
, and Smalley
, R. E.
, 1985, “C60: Buckminsterfullerene
,” Nature (London)
0028-0836, 318
(6042
), pp. 162
–163
.2.
Novoselov
, K. S.
, Geim
, A. K.
, Morozov
, S. V.
, Jiang
, D.
, Zhang
, Y.
, Dubonos
, S. V.
, Grigorieva
, I. V.
, and Firsov
, A. A.
, 2004, “Electric Field Effect in Atomically Thin Carbon Films
,” Science
0036-8075, 306
(5696
), pp. 666
–669
.3.
Iijima
, S.
, 1991, “Helical Microtubules of Graphitic Carbon
,” Nature (London)
0028-0836, 354
(6348
), pp. 56
–58
.4.
Dresselhaus
, M. S.
, 1992, “Down the Straight and Narrow
,” Nature (London)
0028-0836, 358
(6383
), pp. 195
–196
.5.
Li
, C. Y.
, and Chou
, T. W.
, 2004, “Strain and Pressure Sensing Using Single-Walled Carbon Nanotubes
,” Nanotechnology
0957-4484, 15
(11
), pp. 1493
–1496
.6.
Ghosh
, S.
, Sood
, A. K.
, and Kumar
, N.
, 2003, “Carbon Nanotube Flow Sensors
,” Science
0036-8075, 299
(5609
), pp. 1042
–1044
.7.
Modi
, A.
, Koratkar
, N.
, Lass
, E.
, Wei
, B.
, and Ajayan
, P. M.
, 2003, “Miniaturized Gas Ionization Sensors Using Carbon Nanotubes
,” Nature (London)
0028-0836, 424
(6945
), pp. 171
–174
.8.
Barone
, P. W.
, Baik
, S.
, Heller
, D. A.
, and Strano
, M. S.
, 2005, “Biosensors Based on Single-Walled Carbon Nanotube Near-Infrared Fluorescence
,” Nature Mater.
1476-1122, 4
(1
), pp. 86
–92
.9.
Chiu
, H. Y.
, Hung
, P.
, Postma
, H. W. Ch.
, and Bockrath
, M.
, 2008, “Atomic-Scale Mass Sensing Using Carbon Nanotube Resonators
,” Nano Lett.
1530-6984, 8
(12
), pp. 4342
–4346
.10.
Wu
, J.
, Zang
, J.
, Larade
, B.
, Guo
, H.
, Xong
, X. G.
, and Liu
, F.
, 2004, “Computational Design of Carbon Nanotube Electromechanical Pressure Sensors
,” Phys. Rev. B
0556-2805, 69
(15
), p. 153406
.11.
Dharap
, P.
, Li
, Z.
, Nagarajaiah
, S.
, and Barrera
, E. V.
, 2004, “Nanotube Film Based on Single-Wall Carbon Nanotubes for Strain Sensing
,” Nanotechnology
0957-4484, 15
(3
), pp. 379
–382
.12.
Jang
, Y. T.
, Moon
, S. I.
, Ahn
, J. H.
, Lee
, Y. H.
, and Ju
, B. K.
, 2004, “A Simple Approach in Fabricating Chemical Sensor Using Laterally Grown Multi-Walled Carbon Nanotubes
,” Sens. Actuators B
0925-4005, 99
(1
), pp. 118
–122
.13.
Staii
, C.
, Johnson
, A. T.
, Chen
, M.
, and Gelperin
, A.
, 2005, “DNA-Decorated Carbon Nanotubes for Chemical Sensing
,” Nano Lett.
1530-6984, 5
(9
), pp. 1774
–1778
.14.
Sotiropoulou
, S.
, and Chaniotakis
, N. A.
, 2003, “Carbon Nanotube Array-Based Biosensor
,” Anal. Bioanal. Chem.
1618-2642, 375
(1
), pp. 103
–105
.15.
Robinson
, J. A.
, Snow
, E. S.
, Badescu
, S. C.
, Reinecke
, T. L.
, and Perkins
, F. K.
, 2006, “Role of Defects in Single-Walled Carbon Nanotube Chemical Sensors
,” Nano Lett.
1530-6984, 6
(8
), pp. 1747
–1751
.16.
Ilic
, B.
, Czaplewski
, D.
, Craighead
, H. G.
, Neuzil
, P.
, Campagnolo
, C.
, and Batt
, C.
, 2000, “Mechanical Resonant Immunospecific Biological Detector
,” Appl. Phys. Lett.
0003-6951, 77
(3
), pp. 450
–452
.17.
Lavrik
, N. V.
, and Datskos
, P. G.
, 2003, “Femtogram Mass Detection Using Photothermally Actuated Nanomechanical Resonators
,” Appl. Phys. Lett.
0003-6951, 82
(16
), pp. 2697
–2699
.18.
Poncharal
, P.
, Wang
, Z. L.
, Ugarte
, D.
, and de Heer
, W. A.
, 1999, “Electrostatic Deflections and Electromechanical Resonances of Carbon Nanotubes
,” Science
0036-8075, 283
(5407
), pp. 1513
–1516
.19.
Mateiu
, R.
, Kuhle
, A.
, Marie
, R.
, and Boisen
, A.
, 2005, “Building a Multi-Walled Carbon Nanotube-Based Mass Sensor With the Atomic Force Microscope
,” Ultramicroscopy
0304-3991, 105
(1–4
), pp. 233
–237
.20.
Wu
, D. H.
, Chien
, W. T.
, Chen
, C. S.
, and Chen
, H. H.
, 2006, “Resonant Frequency Analysis of Fixed-Free Single-Walled Carbon Nanotube-Based Mass Sensor
,” Sens. Actuators, A
0924-4247, 126
(1
), pp. 117
–121
.21.
Li
, Y.
, Qiu
, X.
, Yang
, F.
, Wang
, X.
, and Yin
, Y.
, 2008, “Ultra-High Sensitivity of Super Carbon-Nanotube-Based Mass and Strain Sensors
,” Nanotechnology
0957-4484, 19
(16
), p. 165502
.22.
Chowdhury
, R.
, Adhikari
, S.
, and Mitchell
, J.
, 2009, “Vibrating Carbon Nanotube Based Bio-Sensors
,” Physica E (Amsterdam)
1386-9477, 42
(2
), pp. 104
–109
.23.
Georgantzinos
, S. K.
, and Anifantis
, N. K.
, 2010, “Carbon Nanotube-Based Resonant Nanomechanical Sensors: A Computational Investigation of Their Behavior
,” Physica E (Amsterdam)
1386-9477, 42
(5
), pp. 1795
–1801
.24.
Lee
, H. L.
, Hsu
, J. C.
, and Chang
, W. J.
, 2010, “Frequency Shift of Carbon Nanotube-Based Mass Sensor Using Nonlocal Elasticity Theory
,” Nanoscale Res. Lett.
1931-7573, 5
(11
), pp. 1774
–1778
.25.
Brenner
, D. W.
, Shenderova
, O. A.
, Harrison
, J. A.
, Stuart
, S. J.
, Ni
, B.
, and Sinnott
, S. B.
, 2002, “A Second-Generation Reactive Empirical Bond Order (REBO) Potential Energy Expression for Hydrocarbons
,” J. Phys.: Condens. Matter
0953-8984, 14
(4
), pp. 783
–802
.26.
Lennard-Jones
, J. E.
, 1924, “The Determination of Molecular Fields: From the Variation of the Viscosity of a Gas With Temperature
,” Proc. R. Soc. London, Ser. A
0950-1207, 106
, pp. 441
–462
.27.
Allen
, M. P.
, and Tildesley
, D. J.
, 1989, Computer Simulation of Liquids
, Oxford University Press
, New York
.28.
Hoover
, W. G.
, 1985, “Canonical Dynamics: Equilibrium Phase-Space Distributions
,” Phys. Rev. A
1050-2947, 31
(3
), pp. 1695
–1697
.29.
Zhang
, Y. Y.
, Wang
, C. M.
, and Tan
, V. B. C.
, 2009, “Assessment of Timoshenko Beam Models for Vibrational Behavior of Single-Walled Carbon Nanotubes using Molecular Dynamics
,” Adv. Appl. Math. Mech.
, 1
(1
), pp. 89
–106
.Copyright © 2011
by American Society of Mechanical Engineers
You do not currently have access to this content.