The potential of single-walled carbon nanotubes as nanosensors in detection of noble gases via a vibration analysis is investigated using molecular dynamics simulations. An index based on frequency shifts of the nanotubes in an environment of noble gas atoms is defined and examined to measure the sensitivity of the sensors. The effects of density of gas atoms on the tube sensors, the diameter and length of the tubes, and the type of restrained boundary of the tubes on the sensitivity are studied. The simulation results indicate that the resolution of a sensor made of a (8, 8) carbon nanotube with a length of 4.92 nm can achieve an order of 106fg and the sensitivity can be enhanced by nanotubes with smaller sizes and stiffer boundary conditions.

1.
Kroto
,
H. W.
,
Heath
,
J. R.
,
O’Brien
,
S. C.
,
Curl
,
R. F.
, and
Smalley
,
R. E.
, 1985, “
C60: Buckminsterfullerene
,”
Nature (London)
0028-0836,
318
(
6042
), pp.
162
163
.
2.
Novoselov
,
K. S.
,
Geim
,
A. K.
,
Morozov
,
S. V.
,
Jiang
,
D.
,
Zhang
,
Y.
,
Dubonos
,
S. V.
,
Grigorieva
,
I. V.
, and
Firsov
,
A. A.
, 2004, “
Electric Field Effect in Atomically Thin Carbon Films
,”
Science
0036-8075,
306
(
5696
), pp.
666
669
.
3.
Iijima
,
S.
, 1991, “
Helical Microtubules of Graphitic Carbon
,”
Nature (London)
0028-0836,
354
(
6348
), pp.
56
58
.
4.
Dresselhaus
,
M. S.
, 1992, “
Down the Straight and Narrow
,”
Nature (London)
0028-0836,
358
(
6383
), pp.
195
196
.
5.
Li
,
C. Y.
, and
Chou
,
T. W.
, 2004, “
Strain and Pressure Sensing Using Single-Walled Carbon Nanotubes
,”
Nanotechnology
0957-4484,
15
(
11
), pp.
1493
1496
.
6.
Ghosh
,
S.
,
Sood
,
A. K.
, and
Kumar
,
N.
, 2003, “
Carbon Nanotube Flow Sensors
,”
Science
0036-8075,
299
(
5609
), pp.
1042
1044
.
7.
Modi
,
A.
,
Koratkar
,
N.
,
Lass
,
E.
,
Wei
,
B.
, and
Ajayan
,
P. M.
, 2003, “
Miniaturized Gas Ionization Sensors Using Carbon Nanotubes
,”
Nature (London)
0028-0836,
424
(
6945
), pp.
171
174
.
8.
Barone
,
P. W.
,
Baik
,
S.
,
Heller
,
D. A.
, and
Strano
,
M. S.
, 2005, “
Biosensors Based on Single-Walled Carbon Nanotube Near-Infrared Fluorescence
,”
Nature Mater.
1476-1122,
4
(
1
), pp.
86
92
.
9.
Chiu
,
H. Y.
,
Hung
,
P.
,
Postma
,
H. W. Ch.
, and
Bockrath
,
M.
, 2008, “
Atomic-Scale Mass Sensing Using Carbon Nanotube Resonators
,”
Nano Lett.
1530-6984,
8
(
12
), pp.
4342
4346
.
10.
Wu
,
J.
,
Zang
,
J.
,
Larade
,
B.
,
Guo
,
H.
,
Xong
,
X. G.
, and
Liu
,
F.
, 2004, “
Computational Design of Carbon Nanotube Electromechanical Pressure Sensors
,”
Phys. Rev. B
0556-2805,
69
(
15
), p.
153406
.
11.
Dharap
,
P.
,
Li
,
Z.
,
Nagarajaiah
,
S.
, and
Barrera
,
E. V.
, 2004, “
Nanotube Film Based on Single-Wall Carbon Nanotubes for Strain Sensing
,”
Nanotechnology
0957-4484,
15
(
3
), pp.
379
382
.
12.
Jang
,
Y. T.
,
Moon
,
S. I.
,
Ahn
,
J. H.
,
Lee
,
Y. H.
, and
Ju
,
B. K.
, 2004, “
A Simple Approach in Fabricating Chemical Sensor Using Laterally Grown Multi-Walled Carbon Nanotubes
,”
Sens. Actuators B
0925-4005,
99
(
1
), pp.
118
122
.
13.
Staii
,
C.
,
Johnson
,
A. T.
,
Chen
,
M.
, and
Gelperin
,
A.
, 2005, “
DNA-Decorated Carbon Nanotubes for Chemical Sensing
,”
Nano Lett.
1530-6984,
5
(
9
), pp.
1774
1778
.
14.
Sotiropoulou
,
S.
, and
Chaniotakis
,
N. A.
, 2003, “
Carbon Nanotube Array-Based Biosensor
,”
Anal. Bioanal. Chem.
1618-2642,
375
(
1
), pp.
103
105
.
15.
Robinson
,
J. A.
,
Snow
,
E. S.
,
Badescu
,
S. C.
,
Reinecke
,
T. L.
, and
Perkins
,
F. K.
, 2006, “
Role of Defects in Single-Walled Carbon Nanotube Chemical Sensors
,”
Nano Lett.
1530-6984,
6
(
8
), pp.
1747
1751
.
16.
Ilic
,
B.
,
Czaplewski
,
D.
,
Craighead
,
H. G.
,
Neuzil
,
P.
,
Campagnolo
,
C.
, and
Batt
,
C.
, 2000, “
Mechanical Resonant Immunospecific Biological Detector
,”
Appl. Phys. Lett.
0003-6951,
77
(
3
), pp.
450
452
.
17.
Lavrik
,
N. V.
, and
Datskos
,
P. G.
, 2003, “
Femtogram Mass Detection Using Photothermally Actuated Nanomechanical Resonators
,”
Appl. Phys. Lett.
0003-6951,
82
(
16
), pp.
2697
2699
.
18.
Poncharal
,
P.
,
Wang
,
Z. L.
,
Ugarte
,
D.
, and
de Heer
,
W. A.
, 1999, “
Electrostatic Deflections and Electromechanical Resonances of Carbon Nanotubes
,”
Science
0036-8075,
283
(
5407
), pp.
1513
1516
.
19.
Mateiu
,
R.
,
Kuhle
,
A.
,
Marie
,
R.
, and
Boisen
,
A.
, 2005, “
Building a Multi-Walled Carbon Nanotube-Based Mass Sensor With the Atomic Force Microscope
,”
Ultramicroscopy
0304-3991,
105
(
1–4
), pp.
233
237
.
20.
Wu
,
D. H.
,
Chien
,
W. T.
,
Chen
,
C. S.
, and
Chen
,
H. H.
, 2006, “
Resonant Frequency Analysis of Fixed-Free Single-Walled Carbon Nanotube-Based Mass Sensor
,”
Sens. Actuators, A
0924-4247,
126
(
1
), pp.
117
121
.
21.
Li
,
Y.
,
Qiu
,
X.
,
Yang
,
F.
,
Wang
,
X.
, and
Yin
,
Y.
, 2008, “
Ultra-High Sensitivity of Super Carbon-Nanotube-Based Mass and Strain Sensors
,”
Nanotechnology
0957-4484,
19
(
16
), p.
165502
.
22.
Chowdhury
,
R.
,
Adhikari
,
S.
, and
Mitchell
,
J.
, 2009, “
Vibrating Carbon Nanotube Based Bio-Sensors
,”
Physica E (Amsterdam)
1386-9477,
42
(
2
), pp.
104
109
.
23.
Georgantzinos
,
S. K.
, and
Anifantis
,
N. K.
, 2010, “
Carbon Nanotube-Based Resonant Nanomechanical Sensors: A Computational Investigation of Their Behavior
,”
Physica E (Amsterdam)
1386-9477,
42
(
5
), pp.
1795
1801
.
24.
Lee
,
H. L.
,
Hsu
,
J. C.
, and
Chang
,
W. J.
, 2010, “
Frequency Shift of Carbon Nanotube-Based Mass Sensor Using Nonlocal Elasticity Theory
,”
Nanoscale Res. Lett.
1931-7573,
5
(
11
), pp.
1774
1778
.
25.
Brenner
,
D. W.
,
Shenderova
,
O. A.
,
Harrison
,
J. A.
,
Stuart
,
S. J.
,
Ni
,
B.
, and
Sinnott
,
S. B.
, 2002, “
A Second-Generation Reactive Empirical Bond Order (REBO) Potential Energy Expression for Hydrocarbons
,”
J. Phys.: Condens. Matter
0953-8984,
14
(
4
), pp.
783
802
.
26.
Lennard-Jones
,
J. E.
, 1924, “
The Determination of Molecular Fields: From the Variation of the Viscosity of a Gas With Temperature
,”
Proc. R. Soc. London, Ser. A
0950-1207,
106
, pp.
441
462
.
27.
Allen
,
M. P.
, and
Tildesley
,
D. J.
, 1989,
Computer Simulation of Liquids
,
Oxford University Press
,
New York
.
28.
Hoover
,
W. G.
, 1985, “
Canonical Dynamics: Equilibrium Phase-Space Distributions
,”
Phys. Rev. A
1050-2947,
31
(
3
), pp.
1695
1697
.
29.
Zhang
,
Y. Y.
,
Wang
,
C. M.
, and
Tan
,
V. B. C.
, 2009, “
Assessment of Timoshenko Beam Models for Vibrational Behavior of Single-Walled Carbon Nanotubes using Molecular Dynamics
,”
Adv. Appl. Math. Mech.
,
1
(
1
), pp.
89
106
.
You do not currently have access to this content.