In this experimental study, a filtered white light is used to induce heating in water-based dispersions of 20 nm diameter gold nanospheres (GNSs)—enabling a low-cost form of plasmonic photothermal heating. The resulting temperature fields were measured using an infrared (IR) camera. The effect of incident radiative flux (ranging from 0.38 to 0.77 W·cm−2) and particle concentration (ranging from 0.25–1.0 × 1013 particles per mL) on the solution's temperature were investigated. The experimental results indicate that surface heat treatments via GNSs can be achieved through complementary tuning of GNS solutions and filtered light.

References

1.
Terentyuk
,
G. S.
,
Maslyakova
,
G. N.
,
Suleymanova
,
L. V.
,
Khlebtsov
,
N. G.
,
Khlebtsov
,
B. N.
,
Akchurin
,
G. G.
,
Maksimova
,
I. L.
, and
Tuchin
,
V. V.
,
2009
, “
Laser-Induced Tissue Hyperthermia Mediated by Gold Nanoparticles: Toward Cancer Phototherapy
,”
J. Biomed. Opt.
,
14
(2)
, p.
021016
.10.1117/1.3122371
2.
Choi
,
W. I.
,
Sahu
,
A.
,
Kim
,
Y. H.
, and
Tae
,
G.
,
2012
, “
Photothermal Cancer Therapy and Imaging Based on Gold Nanorods
,”
Ann. Biomed. Eng.
,
40
(
2
), pp.
534
546
.10.1007/s10439-011-0388-0
3.
Soni
,
S.
,
Tyagi
,
H.
,
Taylor
,
R. A.
, and
Kumar
,
A.
,
2013
, “
Role of Optical Coefficients and Healthy Tissue-Sparing Characteristics in Gold Nanorod-Assisted Thermal Therapy
,”
Int. J. Hyperthermia
,
29
(
1
), pp.
87
97
.10.3109/02656736.2012.753162
4.
Frens
,
G.
,
1973
, “
Controlled Nucleation for the Reuglation of the Particle Size in Monodisperse Gold Suspensions
,”
Nat. Phys. Sci.
,
241
, pp. 20–22.10.1038/physci241020a0
5.
An
,
W.
,
Zhu
,
Q.
,
Zhu
,
T.
, and
Gao
,
N.
,
2013
, “
Radiative Properties of Gold Nanorod Solutions and Its Temperature Distribution Under Laser Irradiation: Experimental Investigation
,”
Exp. Therm. Fluid Sci.
,
44
, pp.
409
418
.10.1016/j.expthermflusci.2012.08.001
6.
Hewakuruppu
,
Y. L.
,
Dombrovsky
,
L. A.
,
Chen
,
C.
,
Timchenko
,
V.
,
Jiang
,
X.
,
Baek
,
S.
, and
Taylor
,
R. A.
,
2013
, “
Plasmonic “Pump—Probe” Method to Study Semi-Transparent Nanofluids
,”
Appl. Opt.
,
52
(
24
), pp.
6041
6050
.10.1364/AO.52.006041
7.
Taylor
,
R. A.
,
Otanicar
,
T. P.
,
Hewakerrppu
,
Y.
,
Bremond
,
F.
,
Rosengarten
,
G.
,
Hawkes
,
E.
,
Jiang
,
X.
, and
Coulombe
,
S.
,
2013
, “
Feasibility of Nanofluid-Based Optical Filters
,”
Appl. Opt.
,
52
(
7
), pp.
1413
1422
.10.1364/AO.52.001413
8.
Taylor
,
R. A.
,
Phelan
,
P. E.
,
Adrian
,
R. J.
,
Gunawan
,
A.
, and
Otanicar
,
T. P.
,
2012
, “
Characterization of Light-Induced, Volumetric Steam Generation in Nanofluids
,”
Int. J. Therm. Sci.
,
56
, pp.
1
11
.10.1016/j.ijthermalsci.2012.01.012
9.
Dombrovsky
,
L. A.
,
Timchenko
,
V.
, and
Jackson
,
M.
,
2012
, “
Indirect Heating Strategy for Laser Induced Hyperthermia: An Advanced Thermal Model
,”
Int. J. Heat Mass Transfer
,
55
, pp.
4688
4700
.10.1016/j.ijheatmasstransfer.2012.04.029
10.
Dombrovsky
,
L. A.
,
Timchenko
,
V.
,
Jackson
,
M.
, and
Yeoh
,
G. H.
,
2011
, “
A Combined Transient Thermal Model for Laser Hyperthermia of Tumors With Embedded Gold Nanoshells
,”
Int. J. Heat Mass Transfer
,
54
(
25–26
), pp.
5459
5469
.10.1016/j.ijheatmasstransfer.2011.07.045
11.
Huang
,
X.
,
Jain
,
P. K.
,
El-Sayed
,
I. H.
, and
El-Sayed
,
M. A.
,
2006
, “
Determination of the Minimum Temperature Required for Selective Photothermal Destruction of Cancer Cells With the Use of Immunotargeted Gold Nanoparticle
,”
Photochem. Photobiol.
,
82
(
2
), pp.
412
417
.10.1562/2005-12-14-RA-754
12.
Pattani
,
V. P.
, and
Tunnell
,
J. W.
,
2012
, “
Nanoparticle-Mediated Photothermal Therapy: A Comparative Study of Heating for Different Particle Types
,”
Lasers Surg. Med.
,
44
(
8
), pp.
675
684
.10.1002/lsm.22072
13.
Taylor
,
R. A.
,
Coulombe
,
S.
,
Otanicar
,
T. P.
,
Phelan
,
P. E.
,
Gunawan
,
A.
,
Lv
,
W.
,
Rosengarten
,
G.
,
Prasher
,
R. S.
, and
Tyagi
,
H.
,
2013
, “
Small Particles, Big Impacts: A Review of the Diverse Applications of Nanofluids
,”
J. Appl. Phys.
,
113
, p.
011301
.10.1063/1.4754271
14.
Taylor
,
R. A.
,
Phelan
,
P. E.
,
Otanicar
,
T.
,
Adrian
,
R. J.
, and
Prasher
,
R. S.
,
2009
, “
Vapor Generation in a Nanoparticle Liquid Suspension Using a Focused, Continuous Laser Beam
,”
Appl. Phys. Lett.
,
95
(
16
), p.
161907
.10.1063/1.3250174
15.
Bergman
,
T. L.
,
Lavine
,
A. S.
,
Incropera
,
F. P.
, and
DeWitt
,
D. P.
,
2011
,
Fundamentals of Heat and Mass Transfer
,
Wiley
,
Hoboken, NJ
.
16.
Churchill
,
S. W.
, and
Chu
,
H. H. S.
,
1975
, “
Correlating Equations for Laminar and Turbulent Free Convection From a Vertical Plate
,”
Int. J. Heat Mass Transfer
,
18
(
11
), pp.
1323
1329
.10.1016/0017-9310(75)90243-4
17.
Ganesan
,
K.
,
Dombrovsky
,
L. A.
,
Oh
,
T.-S.
, and
Lipiński
,
W.
,
2013
, “
Determination of Optical Constants of Ceria By Combined Analytical and Experimental Approaches
,”
JOM
,
65
(
12
), pp.
1694
1701
.10.1007/s11837-013-0708-y
18.
Dombrovsky
,
L. A.
, and
Baillis
,
D.
,
2010
,
Thermal Radiation in Disperse Systems: An Engineering Approach
,
Begell House
,
New York
.
19.
Taylor
,
R. A.
,
Phelan
,
P. E.
,
Otanicar
,
T. P.
,
Adrian
,
R.
, and
Prasher
,
R.
,
2011
, “
Nanofluid Optical Property Characterization: Towards Efficient Direct Absorption Solar Collectors
,”
Nanoscale Res. Lett.
,
6
:225.10.1186/1556-276X-6-225
20.
Huang
,
H.-C.
,
Rege
,
K.
, and
Heys
,
J. J.
,
2010
, “
Spatiotemporal Temperature Distribution and Cancer Cell Death in Response to Extracellular Hyperthermia Induced by Gold Nanorods
,”
ACS Nano
,
4
(
5
), pp.
2892
2900
.10.1021/nn901884d
You do not currently have access to this content.