In this experimental study, a filtered white light is used to induce heating in water-based dispersions of 20 nm diameter gold nanospheres (GNSs)—enabling a low-cost form of plasmonic photothermal heating. The resulting temperature fields were measured using an infrared (IR) camera. The effect of incident radiative flux (ranging from 0.38 to 0.77 W·cm−2) and particle concentration (ranging from 0.25–1.0 × 1013 particles per mL) on the solution's temperature were investigated. The experimental results indicate that surface heat treatments via GNSs can be achieved through complementary tuning of GNS solutions and filtered light.
Issue Section:
Research Papers
References
1.
Terentyuk
, G. S.
, Maslyakova
, G. N.
, Suleymanova
, L. V.
, Khlebtsov
, N. G.
, Khlebtsov
, B. N.
, Akchurin
, G. G.
, Maksimova
, I. L.
, and Tuchin
, V. V.
, 2009
, “Laser-Induced Tissue Hyperthermia Mediated by Gold Nanoparticles: Toward Cancer Phototherapy
,” J. Biomed. Opt.
, 14
(2)
, p. 021016
.10.1117/1.31223712.
Choi
, W. I.
, Sahu
, A.
, Kim
, Y. H.
, and Tae
, G.
, 2012
, “Photothermal Cancer Therapy and Imaging Based on Gold Nanorods
,” Ann. Biomed. Eng.
, 40
(2
), pp. 534
–546
.10.1007/s10439-011-0388-03.
Soni
, S.
, Tyagi
, H.
, Taylor
, R. A.
, and Kumar
, A.
, 2013
, “Role of Optical Coefficients and Healthy Tissue-Sparing Characteristics in Gold Nanorod-Assisted Thermal Therapy
,” Int. J. Hyperthermia
, 29
(1
), pp. 87
–97
.10.3109/02656736.2012.7531624.
Frens
, G.
, 1973
, “Controlled Nucleation for the Reuglation of the Particle Size in Monodisperse Gold Suspensions
,” Nat. Phys. Sci.
, 241
, pp. 20–22.10.1038/physci241020a05.
An
, W.
, Zhu
, Q.
, Zhu
, T.
, and Gao
, N.
, 2013
, “Radiative Properties of Gold Nanorod Solutions and Its Temperature Distribution Under Laser Irradiation: Experimental Investigation
,” Exp. Therm. Fluid Sci.
, 44
, pp. 409
–418
.10.1016/j.expthermflusci.2012.08.0016.
Hewakuruppu
, Y. L.
, Dombrovsky
, L. A.
, Chen
, C.
, Timchenko
, V.
, Jiang
, X.
, Baek
, S.
, and Taylor
, R. A.
, 2013
, “Plasmonic “Pump—Probe” Method to Study Semi-Transparent Nanofluids
,” Appl. Opt.
, 52
(24
), pp. 6041
–6050
.10.1364/AO.52.0060417.
Taylor
, R. A.
, Otanicar
, T. P.
, Hewakerrppu
, Y.
, Bremond
, F.
, Rosengarten
, G.
, Hawkes
, E.
, Jiang
, X.
, and Coulombe
, S.
, 2013
, “Feasibility of Nanofluid-Based Optical Filters
,” Appl. Opt.
, 52
(7
), pp. 1413
–1422
.10.1364/AO.52.0014138.
Taylor
, R. A.
, Phelan
, P. E.
, Adrian
, R. J.
, Gunawan
, A.
, and Otanicar
, T. P.
, 2012
, “Characterization of Light-Induced, Volumetric Steam Generation in Nanofluids
,” Int. J. Therm. Sci.
, 56
, pp. 1
–11
.10.1016/j.ijthermalsci.2012.01.0129.
Dombrovsky
, L. A.
, Timchenko
, V.
, and Jackson
, M.
, 2012
, “Indirect Heating Strategy for Laser Induced Hyperthermia: An Advanced Thermal Model
,” Int. J. Heat Mass Transfer
, 55
, pp. 4688
–4700
.10.1016/j.ijheatmasstransfer.2012.04.02910.
Dombrovsky
, L. A.
, Timchenko
, V.
, Jackson
, M.
, and Yeoh
, G. H.
, 2011
, “A Combined Transient Thermal Model for Laser Hyperthermia of Tumors With Embedded Gold Nanoshells
,” Int. J. Heat Mass Transfer
, 54
(25–26
), pp. 5459
–5469
.10.1016/j.ijheatmasstransfer.2011.07.04511.
Huang
, X.
, Jain
, P. K.
, El-Sayed
, I. H.
, and El-Sayed
, M. A.
, 2006
, “Determination of the Minimum Temperature Required for Selective Photothermal Destruction of Cancer Cells With the Use of Immunotargeted Gold Nanoparticle
,” Photochem. Photobiol.
, 82
(2
), pp. 412
–417
.10.1562/2005-12-14-RA-75412.
Pattani
, V. P.
, and Tunnell
, J. W.
, 2012
, “Nanoparticle-Mediated Photothermal Therapy: A Comparative Study of Heating for Different Particle Types
,” Lasers Surg. Med.
, 44
(8
), pp. 675
–684
.10.1002/lsm.2207213.
Taylor
, R. A.
, Coulombe
, S.
, Otanicar
, T. P.
, Phelan
, P. E.
, Gunawan
, A.
, Lv
, W.
, Rosengarten
, G.
, Prasher
, R. S.
, and Tyagi
, H.
, 2013
, “Small Particles, Big Impacts: A Review of the Diverse Applications of Nanofluids
,” J. Appl. Phys.
, 113
, p. 011301
.10.1063/1.475427114.
Taylor
, R. A.
, Phelan
, P. E.
, Otanicar
, T.
, Adrian
, R. J.
, and Prasher
, R. S.
, 2009
, “Vapor Generation in a Nanoparticle Liquid Suspension Using a Focused, Continuous Laser Beam
,” Appl. Phys. Lett.
, 95
(16
), p. 161907
.10.1063/1.325017415.
Bergman
, T. L.
, Lavine
, A. S.
, Incropera
, F. P.
, and DeWitt
, D. P.
, 2011
, Fundamentals of Heat and Mass Transfer
, Wiley
, Hoboken, NJ
.16.
Churchill
, S. W.
, and Chu
, H. H. S.
, 1975
, “Correlating Equations for Laminar and Turbulent Free Convection From a Vertical Plate
,” Int. J. Heat Mass Transfer
, 18
(11
), pp. 1323
–1329
.10.1016/0017-9310(75)90243-417.
Ganesan
, K.
, Dombrovsky
, L. A.
, Oh
, T.-S.
, and Lipiński
, W.
, 2013
, “Determination of Optical Constants of Ceria By Combined Analytical and Experimental Approaches
,” JOM
, 65
(12
), pp. 1694
–1701
.10.1007/s11837-013-0708-y18.
Dombrovsky
, L. A.
, and Baillis
, D.
, 2010
, Thermal Radiation in Disperse Systems: An Engineering Approach
, Begell House
, New York
.19.
Taylor
, R. A.
, Phelan
, P. E.
, Otanicar
, T. P.
, Adrian
, R.
, and Prasher
, R.
, 2011
, “Nanofluid Optical Property Characterization: Towards Efficient Direct Absorption Solar Collectors
,” Nanoscale Res. Lett.
, 6
:225.10.1186/1556-276X-6-22520.
Huang
, H.-C.
, Rege
, K.
, and Heys
, J. J.
, 2010
, “Spatiotemporal Temperature Distribution and Cancer Cell Death in Response to Extracellular Hyperthermia Induced by Gold Nanorods
,” ACS Nano
, 4
(5
), pp. 2892
–2900
.10.1021/nn901884dCopyright © 2013 by ASME
You do not currently have access to this content.