The effect of tandem spacing on the flow-induced motions (FIM) of two circular cylinders with passive turbulence control is investigated using two-dimensional (2D) unsteady Reynolds-averaged Navier–Stokes equations with the Spalart–Allmaras turbulence model. Results are compared to experiments in the range of Reynolds number of 30,000 < Re < 100,000. The center-to-center spacing between the two cylinders is varied from 2 to 6 diameters. Simulation results predict well all the ranges of FIM including vortex-induced vibrations (VIV) and galloping and match well with experimental measurements. For the upstream cylinder, the amplitude and frequency responses are not considerably influenced by the downstream cylinder when the spacing is greater than 2D. For the downstream cylinder, a rising amplitude trend in the VIV upper-branch can be observed in all the cases as is typical of flows in the TrSL3 flow regime (transition in shear layer 3; 2 × 104 < Re < 3 × 105). The galloping branch merges with the VIV upper-branch for spacing greater than three-dimensional (3D). Vortex structures show significant variation in different flow regimes in accordance with experimental observations. High-resolution postprocessing shows that the interaction between the wakes of cylinders results in various types of FIM.

References

1.
Bernitsas
,
M. M.
,
Ben-Simon
,
Y.
,
Raghavan
,
K.
, and
Garcia
,
E. M. H.
,
2009
, “
The VIVACE Converter: Model Tests at High Damping and Reynolds Number Around 105
,”
ASME J. Offshore Mech. Arctic Eng.
,
131
(
1
), p.
011102
.
2.
Bernitsas
,
M. M.
, and
Raghavan
,
K.
,
2009
, “
Converter of Current, Tide, or Wave Energy
,” United States Patent and Trademark Office, U.S. Patent No. 7,493,759 B2.
3.
Bernitsas
,
M. M.
,
Raghavan
,
K.
,
Ben-Simon
,
Y.
, and
Garcia
,
E. M. H.
,
2008
, “
VIVACE (Vortex Induced Vibration Aquatic Clean Energy): A New Concept in Generation of Clean and Renewable Energy From Fluid Flow
,”
ASME J. Offshore Mech. Arctic Eng.
,
130
(
4
), p.
041101
.
4.
Chang
,
C. C.
,
Kumar
,
R. A.
, and
Bernitsas
,
M. M.
,
2011
, “
VIV and Galloping of Single Circular Cylinder With Surface Roughness at 3.0 × 104 ≤ Re ≤ 1.2 × 105
,”
Ocean Eng.
,
38
(
16
), pp.
1713
1732
.
5.
Ding
,
L.
,
Bernitsas
,
M. M.
, and
Kim
,
E. S.
,
2013
, “
2-D URANS vs. Experiments of Flow Induced Motions of Two Circular Cylinders in Tandem With Passive Turbulence Control for 30,000 < Re < 105,000
,”
Ocean Eng.
,
72
, pp.
429
440
.
6.
Kim
,
E. S.
,
Bernitsas
,
M. M.
, and
Kumar
,
R. A.
,
2013
, “
Multicylinder Flow-Induced Motions: Enhancement by Passive Turbulence Control at 28,000 < Re < 120,000
,”
ASME J. Offshore Mech. Arctic Eng.
,
135
(
2
), p.
021802
.
7.
Lee
,
J. H.
, and
Bernitsas
,
M. M.
,
2011
, “
High-Damping, High-Reynolds VIV Tests for Energy Harnessing Using the VIVACE Converter
,”
Ocean Eng.
,
38
(
16
), pp.
1697
1712
.
8.
Park
,
H.
,
Bernitsas
,
M. M.
, and
Kumar
,
R. A.
,
2012
, “
Selective Roughness in the Boundary Layer to Suppress Flow-Induced Motions of Circular Cylinder at 30,000 < Re < 120,000
,”
ASME J. Offshore Mech. Arctic Eng.
,
134
(
4
), p.
041801
.
9.
Park
,
H.
,
Kumar
,
R. A.
, and
Bernitsas
,
M. M.
,
2013
, “
Enhancement of Flow-Induced Motion of Rigid Circular Cylinder on Springs by Localized Surface Roughness at 3 × 104 ≤ Re ≤ 1.2 × 105
,”
Ocean Eng.
,
72
, pp.
403
415
.
10.
Bearman
,
P. W.
,
2011
, “
Circular Cylinder Wakes and Vortex-Induced Vibrations
,”
J. Fluids Struct.
,
27
(
5–6
), pp.
648
658
.
11.
Williamson
,
C. H. K.
, and
Govardhan
,
R.
,
2004
, “
Vortex-Induced Vibrations
,”
Ann. Rev. Fluid Mech.
,
36
, pp.
413
455
.
12.
Assi
,
G.
,
Bearman
,
P.
, and
Meneghini
,
J.
,
2010
, “
On the Wake-Induced Vibration of Tandem Circular Cylinders: The Vortex Interaction Excitation Mechanism
,”
J. Fluid Mech.
,
661
(
1
), pp.
365
401
.
13.
Assi
,
G.
,
Meneghini
,
J.
,
Aranha
,
J.
,
Bearman
,
P.
, and
Casaprima
,
E.
,
2006
, “
Experimental Investigation of Flow-Induced Vibration Interference Between Two Circular Cylinders
,”
J. Fluids Struct.
,
22
(
6
), pp.
819
827
.
14.
Chen
,
S. S.
,
1986
, “
A Review of Flow-Induced Vibration of Two Circular Cylinders in Crossflow
,”
ASME J. Pressure Vessel Technol.
,
108
(
4
), pp.
129
140
.
15.
Ruscheweyh
,
H. P.
,
1983
, “
Aeroelastic Interference Effects Between Slender Structures
,”
J. Wind Eng. Ind. Aerodyn.
,
14
(
1–3
), pp.
129
140
.
16.
Zdravkovich
,
M. M.
, and
Pridden
,
D. L.
,
1977
, “
Interference Between Two Circular Cylinders; Series of Unexpected Discontinuities
,”
J. Wind Eng. Ind. Aerodyn.
,
2
(
3
), pp.
255
270
.
17.
Zdravkovich
,
M. M.
,
1988
, “
Review of Interference-Induced Oscillations in Flow Past 2 Parallel Circular-Cylinders in Various Arrangements
,”
J. Wind Eng. Ind. Aerodyn.
,
28
(
1–3
), pp.
183
200
.
18.
Zdravkovich
,
M. M.
,
1997
,
Flow Around Circular Cylinders Volume 1: Fundamentals
,
Oxford University Press
,
New York
.
19.
Zdravkovich
,
M. M.
,
2003
,
Flow Around Circular Cylinders Volume 2: Applications
,
Oxford University Press
,
New York
.
20.
Laneville
,
A.
, and
Brika
,
D.
,
1999
, “
The Fluid and Mechanical Coupling Between Two Circular Cylinders in Tandem Arrangement
,”
J. Fluids Struct.
,
13
(
7–8
), pp.
967
986
.
21.
Mittal
,
S.
, and
Kumar
,
V.
,
2001
, “
Flow-Induced Oscillations of Two Cylinders in Tandem and Staggered Arrangements
,”
J. Fluids Struct.
,
15
(
5
), pp.
717
736
.
22.
Mittal
,
S.
, and
Kumar
,
V.
,
2004
, “
Vortex Induced Vibrations of a Pair of Cylinders at Reynolds Number 1000
,”
Int. J. Comput. Fluid Dyn.
,
18
(
7
), pp.
601
614
.
23.
Kim
,
S.
,
Alam
,
M. M.
,
Sakamoto
,
H.
, and
Zhou
,
Y.
,
2009
, “
Flow-Induced Vibrations of Two Circular Cylinders in Tandem Arrangement—Part 1: Characteristics of Vibration
,”
J. Wind Eng. Ind. Aerodyn.
,
97
(
5–6
), pp.
304
311
.
24.
Lin
,
J. Z.
,
Jiang
,
R. J.
,
Chen
,
Z. L.
, and
Ku
,
X. K.
,
2013
, “
Poiseuille Flow-Induced Vibrations of Two Cylinders in Tandem
,”
J. Fluids Struct.
,
40
, pp.
70
85
.
25.
Zhao
,
M.
,
2013
, “
Flow Induced Vibration of Two Rigidly Coupled Circular Cylinders in Tandem and Side-By-Side Arrangements at a Low Reynolds Number of 150
,”
Phys. Fluids
,
25
(
12
), p.
123601
.
26.
Hanenkamp
,
W.
, and
Hammer
,
W.
,
1981
, “
Transverse Vibration Behaviour of Cylinders in Line
,”
J. Wind Eng. Ind. Aerodyn.
,
7
(
1
), pp.
37
53
.
27.
Liu
,
X.
,
Levitan
,
M.
, and
Nikitopoulos
,
D.
,
2008
, “
Wind Tunnel Tests for Mean Drag and Lift Coefficients on Multiple Circular Cylinders Arranged In-Line
,”
J. Wind Eng. Ind. Aerodyn.
,
96
(
6
), pp.
831
839
.
28.
Wang
,
X.
,
Zhang
,
H.
,
Zhou
,
Y.
, and
Tu
,
J.
,
2002
, “
Flow Visualization Behind Three Cylinders of Equal and Unequal Spacing
,”
J. Flow Visualization Image Process.
,
9
(
2–3
), pp.
C672
C685
.
29.
Spalart
,
P. R.
, and
Allmaras
,
S. R.
,
1994
, “
A One-Equation Turbulence Model for Aerodynamic Flows
,”
30th Aerospace Sciences Meeting and Exhibit
, Reno, NV, Jan. 6–9.
30.
Travin
,
A.
,
Shur
,
M.
,
Strelets
,
M.
, and
Spalart
,
P.
,
2000
, “
Detached-Eddy Simulations Past a Circular Cylinder
,”
Flow Turbul. Combust.
,
63
(
1
), pp.
293
313
.
31.
Ding
,
L.
,
Zhang
,
L.
,
Kim
,
E. S.
, and
Bernitsas
,
M. M.
,
2015
, “
URANS vs. Experiments of Flow Induced Motions of Multiple Circular Cylinders With Passive Turbulence Control
,”
J. Fluids Struct.
,
54
, pp.
612
628
.
32.
Ding
,
L.
,
Zhang
,
L.
,
Wu
,
C.
,
Mao
,
X.
, and
Jiang
,
D.
,
2015
, “
Flow Induced Motion and Energy Harvesting of Bluff Bodies With Different Cross Sections
,”
Energy Convers. Manage.
,
91
, pp.
416
426
.
33.
Wu
,
W.
,
Bernitsas
,
M. M.
, and
Maki
,
K.
,
2014
, “
RANS Simulation vs. Experiments of Flow Induced Motion of Circular Cylinder With Passive Turbulence Control at 35,000 < Re < 130,000
,”
ASME J. Offshore Mech. Arctic Eng.
,
136
(
4
), p.
041802
.
34.
Ding
,
L.
,
Chen
,
Y.
,
Kim
,
E. S.
, and
Bernitsas
,
M. M.
,
2013
, “
2-D URANS vs. Experiments of Flow Induced Motions of Multiple Circular Cylinders With Passive Turbulence Control
,”
32nd OMAE Conference
, Nantes, France, June 9–14, Paper No. 10911.
35.
Foulhoux
,
L.
, and
Bernitsas
,
M. M.
,
1993
, “
Forces and Moments on a Small Body Moving in a 3-D Unsteady Flow
,”
ASME J. Offshore Mech. Arctic Eng.
,
115
(
2
), pp.
91
104
.
36.
Bernitsas
,
M. M.
,
2016
, “
Harvesting Energy by Flow Included Motions
,”
Springer Handbook of Ocean Engineering
,
M. R.
Dhanak
and
N. I.
Xiros
, eds.,
Springer International Publishing
, Berlin.
37.
Wanderley
,
J. B. V.
,
Sphaier
,
S. H.
, and
Levi
,
C.
,
2008
, “
A Numerical Investigation of Vortex Induced Vibration on an Elastically Mounted Rigid Cylinder
,”
ASME
Paper No. OMAE2008-57344.
38.
Lee
,
J. H.
,
Xiros
,
N.
, and
Bernitsas
,
M. M.
,
2011
, “
Virtual Damper-Spring System for VIV Experiments and Hydrokinetic Energy Conversion
,”
Ocean Eng.
,
38
(
5–6
), pp.
732
747
.
39.
Blevins
,
R. D.
,
1990
,
Flow-Induced Vibration
,
Krieger Publishing
,
Malabar, FL
.
You do not currently have access to this content.