Abstract

Innovative floating offshore wind turbine (FOWT) platforms that deviate from the conventional semi-submersible, spar, and tension leg platforms (TLP) have become increasingly common due to the need to tap into the high wind energy potential located in deeper waters. One example is the hanging-mass concept, in which a suspended counterweight stabilizes a positively buoyant floater. This work presents a two-dimensional, nonlinear, multi-body model used to assess the influence of the counterweight mass and the suspension line stiffness on the system’s global performance, using linear stability analysis and time-domain simulations to conduct a parametric study. For example, the counterweight mass has a strong influence on the amplitude of rotational degrees-of-freedom. Corresponding natural periods may occur within the linear wave energy range for suitable counterweight sizes due to this strong influence leading to undesirable motions. High-frequency multi-body modes are also dependent on both the line stiffness and counterweight mass, which may result in high relative motion amplitudes and slack lines in certain conditions. Finally, the parametric study results contribute to preliminary hanging-mass FOWT design recommendations.

References

1.
Musial
,
W.
,
Heimiller
,
D.
,
Beiter
,
P.
,
Scott
,
G.
, and
Draxl
,
C.
,
2016
, “
2016 Offshore Wind Energy Resource Assessment for the United States
,”
National Renewable Energy Laboratory, Golden, CO.
2.
Borg
,
M.
, and
Collu
,
M.
,
2015
, “
A Comparison Between the Dynamics of Horizontal and Vertical Axis Offshore Floating Wind Turbines
,”
Philosop. Trans. R. Soc. A: Math., Phys. Eng. Sci.
,
373
(
2035
), p.
20140076
.
3.
Viselli
,
A. M.
,
Goupee
,
A. J.
,
Dagher
,
H. J.
, and
Allen
,
C. K.
,
2015
, “
Design and Model Confirmation of the Intermediate Scale VolturnUS Floating Wind Turbine Subjected to Its Extreme Design Conditions Offshore Maine
,”
Wind Energy
,
19
(
6
), pp.
1161
1177
. 10.1002/we.1886
4.
Roddier
,
D.
,
Cermelli
,
C.
,
Aubault
,
A.
, and
Weinstein
,
A.
,
2010
, “
WindFloat: A Floating Foundation for Offshore Wind Turbines
,”
J. Renew. Sustainable Energy
,
2
(
3
), p.
033104
. 10.1063/1.3435339
5.
Skaare
,
B.
,
Nielsen
,
F. G.
,
Hanson
,
T. D.
,
Yttervik
,
R.
,
Havmøller
,
O.
, and
Rekdal
,
A.
,
2014
, “
Analysis of Measurements and Simulations From the Hywind Demo Floating Wind Turbine
,”
Wind Energy
,
18
(
6
), pp.
1105
1122
. 10.1002/we.1750
6.
Quest Floating Wind Energy, LLC
,
Pelestar – Glosten, Online
, https://questfwe.com/concepts/c-pelastar-glosten/
7.
Borg
,
M.
,
Viselli
,
A.
,
Allen
,
C. K.
,
Fowler
,
M.
,
Sigshøj
,
C.
,
Rosa
,
A. G. L.
,
Andersen
,
M. T.
, and
Stiesdal
,
H.
,
2019
, “
Physical Model Testing of the TetraSpar Demo Floating Wind Turbine Prototype
,”
ASME 2019 2nd International Offshore Wind Technical Conference
,
Malta
.
8.
Quest Floating Wind Energy, LLC
,
Hexafloat – Saipem
, Online, https://questfwe.com/concepts/hexafloat-saipem/
9.
Kral
,
R.
, and
Kreuzer
,
E.
,
1999
, “
Multibody Systems and Fluid-Structure Interactions with Application to Floating Structures
,”
Multi. Syst. Dyn.
,
3
(
1
), pp.
65
83
. 10.1023/A:1009710901886
10.
Liu
,
F.
,
1973
,
Snap Loads in Lifting and Mooring Cable Systems Induced by Surface Wave Condidtions, Naval Civil Engineering Laboratory, Port Hueneme, CA, Technical Report N-1288
.
11.
Niedzwecki
,
J. M.
, and
Thampi
,
S. K.
,
1991
, “
Snap Loading of Marine Cable Systems
,”
Appl. Ocean Res.
,
13
(
1
), pp.
2
11
. 10.1016/S0141-1187(05)80035-5
12.
Hann
,
M.
,
1995
, “
Statics and Dynamics of Multi-Cable Systems for Submersibles
,”
Marine Struct.
,
8
(
5
), pp.
555
583
. 10.1016/0951-8339(95)97309-V
13.
Witz
,
J.
,
1995
, “
Parametric Excitation of Crane Loads in Moderate Sea States
,”
Ocean Eng.
,
22
(
4
), pp.
411
420
. 10.1016/0029-8018(94)00015-Y
14.
Ellermann
,
K.
, and
Kreuzer
,
E.
,
2003
, “
Nonlinear Dynamics in the Motion of Floating Cranes
,”
Multi. Syst. Dyn.
,
9
(
4
), pp.
377
387
. 10.1023/A:1023361314261
15.
Stuckey
,
R.
,
2001
,
Mathematical Modelling of Helicopter Slung-Load Systems, DSTO Aeronautical and Maritime Research Laboratory, 506 Lorimer St, Fishermans Bend, Victoria, Australia 3207, Technical Report, DSTO-TR-1257
.
16.
Sibilski
,
K.
,
2003
, “
A Study of the Flight Dynamics of a Helicopter Carrying An External Load Using Bifurcation Theory and Continuation Methods
,”
Theor. Appl. Mech.
,
41
(
4
), pp.
823
852
.
17.
De La Torre
,
G.
,
2015
,
Autonomous Suspended Load Operations Via Trajectory Optimization and Variational Integrators
,
Georgia Institute of Technology
,
Atlanta, GA
,
Master's Thesis
.
18.
Pereyra
,
B. T.
,
Jiang
,
Z.
,
Gao
,
Z.
,
Andersen
,
M. T.
, and
Stiesdal
,
H.
,
2018
, “
Parametric Study of a Counter Weight Suspension System for the TetraSpar Floating Wind Turbine
,”
ASME 2018 1st International Offshore Wind Technical Conference
,
San Francisco, CA
.
19.
Ward
,
J. C.
,
Goupee
,
A. J.
,
Viselli
,
A. M.
, and
Dagher
,
H. J.
,
2020
, “
Influence of the Mass and Line Stiffiness on the Dynamic Line Tension of a Floating Offshore Wind Turbine Stabilized by a Suspended Counterweight
,”
J. Phys.: Conf. Ser.
,
1452
, p.
012043
. https://doi.org/10.1088/1742-6596/1452/1/012043
20.
Lewis
,
E. V.
,
1989
,
Principles of Naval Architecture
,
2nd revision
(3rd ed.),
Society of Naval Architects and Marine Engineers
,
Jersey City
, NJ.
21.
Newman
,
J. N.
, and
Lee
,
C. -H.
,
2014
,
WAMIT User Manual
, 6th ed.,
WAMIT Inc
,
Chestnut Hill MA
, pp.
02467
2504
,
822 Boylston St, Suite 202
.
22.
Jonkman
,
J. M.
, and
Buhl Jr
,
M. L.
,
2005
,
FAST User’s Guide, Natrional Renewable Energy Lab, Technical Report NREL/EL-500-38230
.
23.
DNV GL
,
2016
,
Bladed User Manual
, 4th ed.,
DNV GL
,
Oslo, Norway
.
24.
Ward
,
J. C.
,
2020
,
Numerical and Experimental Investigation Into the Multi-body Dynamics of a Floating Offshore Wind Turbine Stabilized Via a Suspended Counterweight
,
University of Maine
,
Orono, ME
.
25.
Pegalajar-Jurado
,
A.
,
Madsen
,
F. J.
, and
Bredmose
,
H.
,
2019
, “
Damping Identification of the TetraSpar Floater in Two Configurations With Operational Modal Analysis
,”
ASME 2019 2nd International Offshore Wind Technical Conference
,
Malta
.
You do not currently have access to this content.