Abstract

Using a belt as a replacement for a rope on a rotary power take-offs (PTOs) system has become more common for wave energy converters, improving cyclic bend over sheave performance with a smaller bending thickness for belts. However, the service life predictions of PTOs are a major concern in design, because belt performance under harsh underwater environments is largely less studied. In this work, the effect of fleet and twist angles on wear life is being investigated both experimentally and numerically. Two three-dimensional equivalent static finite element models are constructed to evaluate the complex stress state of polyurethane-steel belts around steel drums. The first is to capture the response of the experimental investigation performed on the wear life, and the second to predict the wear life of an existing functional PTO. The results show a significant effect for fleet and twist angles on stress concentrations and estimated service life.

References

1.
Qiao
,
D.
,
Haider
,
R.
,
Yan
,
J.
,
Ning
,
D.
, and
Li
,
B.
,
2020
, “
Review of Wave Energy Converter and Design of Mooring System
,”
Sustainability
,
12
(
19
), p.
8251
.
2.
Kojimoto
,
N.
,
Gibson
,
P.
,
Hagmüller
,
A.
, and
Gunawan
,
B.
,
2021
, Cyclic Bend Over Sheave Performance of a Steel Tension Member Belt For Wave Energy Conversion, Technical Report, National Renewable Energy Laboratory (NREL), Golden, CO.
3.
Kusch
,
R.
,
Rahmati
,
M.
,
Peckolt
,
J. P.
,
Pütz
,
J.
, and
Schay
,
J.
,
2017
, “
Development of a Novel Floater to Power Take-Off Connection for Wave Energy Converters Based on a Belt-Pulley System
,” International Conference on Offshore Mechanics and Arctic Engineering, Vol.
57786
,
American Society of Mechanical Engineers
, p.
V010T09A036
.
4.
Sjolte
,
J.
,
2014
, “Marine Renewable Energy Conversion: Grid and Off-Grid Modeling, Design and Operation”.
5.
Davies
,
P.
,
Lacotte
,
N.
,
Kibsgard
,
G.
,
Craig
,
R.
,
Cannell
,
D.
,
François
,
S.
,
Lodeho
,
O.
, et al.,
2013
, “
Durability of Fibre Ropes for Deep Sea Handling Operations
,” 32nd International Conference on Ocean, Offshore and Arctic Engineering, p.
OMAE2013
.
6.
Davies
,
P.
,
Lacotte
,
N.
,
Arhant
,
M.
,
Durville
,
D.
,
Belkhabbaz
,
A.
,
François
,
M.
,
Khouri
,
F.
, et al.,
2018
, “
Improved Bend Over Sheave Durability of Hmpe Ropes for Deep Sea Handling
,” International Conference on Offshore Mechanics and Arctic Engineering, Vol.
51234
,
American Society of Mechanical Engineers
, p.
V004T03A018
.
7.
Thies
,
P. R.
,
Halswell
,
P.
,
Lehmann
,
M.
, and
Johanning
,
L.
,
2019
, “Integrity and Reliability Testing of a HDPE Taut Mooring System Belt”.
8.
Rosales
,
M. B.
, and
Filipich
,
C. P.
,
2006
, “
Full Modeling of the Mooring Non-Linearity in a Two-Dimensional Floating Structure
,”
Int. J. Non-Linear Mech.
,
41
(
1
), pp.
1
17
.
9.
Rahman
,
M. A.
,
Mizutani
,
N.
, and
Kawasaki
,
K.
,
2006
, “
Numerical Modeling of Dynamic Responses and Mooring Forces of Submerged Floating Breakwater
,”
Coastal Eng.
,
53
(
10
), pp.
799
815
.
10.
Elwood
,
D.
,
Yim
,
S.
,
Amon
,
E.
,
von Jouanne
,
A.
, and
Brekken
,
T.
,
2010
, “
Experimental Force Characterization and Numerical Modeling of a Taut-Moored Dual-Body Wave Energy Conversion System
,”
ASME J. Offshore. Mech. Arct. Eng.
,
132
(
1
), p.
011102
.
11.
Yang
,
R.-Y.
,
Tang
,
H.-J.
, and
Huang
,
C.-C.
,
2019
, “
Numerical Modeling of the Mooring System Failure of an Aquaculture Net Cage System Under Waves and Currents
,”
IEEE J. Ocean. Eng.
,
45
(
4
), pp.
1396
1410
.
12.
Tran
,
T. T.
,
Krueger
,
A. M.
,
Gunawan
,
B.
, and
Alam
,
M. -R.
,
2019
, Predicting the Dynamic Characteristics of a Fully Submerged Wave Energy Converter Subjected to a Power Take-Off Failure Using a High-Fidelity Computational Fluid Dynamics Model, Technical Report, Sandia National Laboratory (SNL-NM), Albuquerque, NM.
13.
Sirnivas
,
S.
,
Yu
,
Y.-H.
,
Hall
,
M.
, and
Bosma
,
B.
,
2016
, “
Coupled Mooring Analyses for the WEC-SIM Wave Energy Converter Design Tool
,” International Conference on Offshore Mechanics and Arctic Engineering, Vol.
49972
,
American Society of Mechanical Engineers
, p.
V006T09A023
.
14.
Beaujean
,
P.-P.
,
Murray
,
B.
,
Gunawan
,
B.
, and
Driscoll
,
F.
,
2021
, A Self-Synchronizing Underwater Acoustic Network for Mooring Load Monitoring of a Wave Energy Converter, Technical Report, National Renewable Energy Laboratory (NREL), Golden, CO.
15.
Rajagopalan
,
K.
,
2018
, Numerical Modeling of the Lifesaver Mooring System for Deployment at Wets, Technical Report, University of Hawaii, Honolulu, HI.
16.
Pham
,
H.-D.
,
Cartraud
,
P.
,
Schoefs
,
F.
,
Soulard
,
T.
, and
Berhault
,
C.
,
2019
, “
Dynamic Modeling of Nylon Mooring Lines for a Floating Wind Turbine
,”
Appl. Ocean Res.
,
87
(
1
), pp.
1
8
.
17.
Lee
,
J.-F.
, and
Tu
,
L.-F.
,
2018
, “
Finite Element Modeling of a Single-Point Multi-segment Mooring in Water Waves
,”
Ocean Eng.
,
160
(
1
), pp.
461
470
.
18.
Wilson
,
S.
,
Hall
,
M.
,
Housner
,
S.
, and
Sirnivas
,
S.
,
2021
, “
Linearized Modeling and Optimization of Shared Mooring Systems
,”
Ocean. Eng.
,
241
(
1
), p.
110009
.
19.
Ramadan
,
M. I.
,
Butt
,
S. D.
, and
Popescu
,
R.
,
2009
, “
Finite Element Modeling of Offshore Anchor Piles Under Mooring Forces
,” Proceeding of 62nd Canadian Geotechnical Society Conference, Vol.
9
,
Geo Halifax
, pp.
785
792
.
20.
Huang
,
C.-C.
,
Tang
,
H.-J.
, and
Wang
,
B.-S.
,
2010
, “
Numerical Modeling for an in Situ Single-Point-Mooring Cage System
,”
IEEE J. Ocean. Eng.
,
35
(
3
), pp.
565
573
.
21.
Tsukrov
,
I.
,
Eroshkin
,
O.
,
Paul
,
W.
, and
Celikkol
,
B.
,
2005
, “
Numerical Modeling of Nonlinear Elastic Components of Mooring Systems
,”
IEEE J. Ocean. Eng.
,
30
(
1
), pp.
37
46
.
22.
Nguyen
,
N.
, and
Thiagarajan
,
K.
,
2022
, “
Nonlinear Viscoelastic Modeling of Synthetic Mooring Lines
,”
Marine Struct.
,
85
(
1
), p.
103257
.
23.
Tonoli
,
A.
,
Amati
,
N.
, and
Zenerino
,
E.
,
2006
, “Dynamic Modeling of Belt Drive Systems: Effects of the Shear Deformations”.
24.
Fedorko
,
G.
,
Molnár
,
V.
,
Michalik
,
P.
,
Dovica
,
M.
,
Kelemenová
,
T.
, and
Toth
,
T.
,
2019
, “
Failure Analysis of Conveyor Belt Samples Under Tensile Load
,”
J. Ind. Text.
,
48
(
8
), pp.
1364
1383
.
25.
Błażej
,
R.
,
Jurdziak
,
L.
,
Kirjanów
,
A.
, and
Kozłowski
,
T.
,
2017
, “
Core Damage Increase Assessment in the Conveyor Belt With Steel Cords
,”
Diagnostyka
,
18
(
3
), pp.
93
98
.
26.
Mamiya
,
E.
,
Castro
,
F.
,
Ferreira
,
G.
,
Nunes Filho
,
E. d. A.
,
Canut
,
F.
,
Neves
,
R.
, and
Malcher
,
L.
,
2019
, “
Fatigue of Mooring Chain Links Subjected to Out-of-Plane Bending: Experiments and Modeling
,”
Eng. Fail. Anal.
,
100
(
1
), pp.
206
213
.
27.
Fedorko
,
G.
,
Molnár
,
V.
,
Živčák
,
J.
,
Dovica
,
M.
, and
Husáková
,
N.
,
2013
, “
Failure Analysis of Textile Rubber Conveyor Belt Damaged by Dynamic Wear
,”
Eng. Fail. Anal.
,
28
(
1
), pp.
103
114
.
28.
Kerkkänen
,
K. S.
,
García-Vallejo
,
D.
, and
Mikkola
,
A. M.
,
2006
, “
Modeling of Belt-Drives Using a Large Deformation Finite Element Formulation
,”
Nonlinear Dyn.
,
43
(
3
), pp.
239
256
.
29.
Long
,
S.
,
Zhao
,
X.
,
Shangguan
,
W.-B.
, and
Zhu
,
W.
,
2020
, “
Modeling and Validation of Dynamic Performances of Timing Belt Driving Systems
,”
Mech. Syst. Signal. Process.
,
144
(
1
), p.
106910
.
30.
Leamy
,
M. J.
, and
Wasfy
,
T. M.
,
2002
, “
Transient and Steady-State Dynamic Finite Element Modeling of Belt-Drives
,”
ASME J. Dyn. Sys. Meas. Control
,
124
(
4
), pp.
575
581
.
31.
Yang
,
G.
,
2014
, “
Dynamics Analysis and Modeling of Rubber Belt in Large Mine Belt Conveyors
,”
Sens. Transducers
,
181
(
10
), p.
210
.
32.
Bortnowski
,
P.
,
Gładysiewicz
,
L.
,
Król
,
R.
, and
Ozdoba
,
M.
,
2021
, “
Models of Transverse Vibration in Conveyor Belt-Investigation and Analysis
,”
Energies
,
14
(
14
), p.
4153
.
33.
Harsha
,
A.
, and
Tewari
,
U.
,
2003
, “
Two-Body and Three-Body Abrasive Wear Behaviour of Polyaryletherketone Composites
,”
Polym. Test.
,
22
(
4
), pp.
403
418
.
34.
Hakami
,
F.
,
Pramanik
,
A.
,
Ridgway
,
N.
, and
Basak
,
A.
,
2017
, “
Developments of Rubber Material Wear in Conveyer Belt System
,”
Tribol. Int.
,
111
(
1
), pp.
148
158
.
35.
Molnar
,
W.
,
Varga
,
M.
,
Braun
,
P.
,
Adam
,
K.
, and
Badisch
,
E.
,
2014
, “
Correlation of Rubber Based Conveyor Belt Properties and Abrasive Wear Rates Under 2-and 3-Body Conditions
,”
Wear
,
320
(
1
), pp.
1
6
.
36.
Wu
,
Y.
,
Zhou
,
Y.
,
Li
,
J.
,
Zhou
,
H.
,
Chen
,
J.
, and
Zhao
,
H.
,
2016
, “
A Comparative Study on Wear Behavior and Mechanism of Styrene Butadiene Rubber Under Dry and Wet Conditions
,”
Wear
,
356
(
1
), pp.
1
8
.
37.
Trezona
,
R.
, and
Hutchings
,
I.
,
1999
, “
Three-Body Abrasive Wear Testing of Soft Materials
,”
Wear
,
233
(
1
), pp.
209
221
.
38.
Unal
,
H.
,
Mimaroglu
,
A.
,
Kadıoglu
,
U.
, and
Ekiz
,
H.
,
2004
, “
Sliding Friction and Wear Behaviour of Polytetrafluoroethylene and Its Composites Under Dry Conditions
,”
Mater. Des.
,
25
(
3
), pp.
239
245
.
39.
Rao
,
R.
, and
Das
,
S.
,
2010
, “
Wear Coefficient and Reliability of Sliding Wear Test Procedure for High Strength Aluminium Alloy and Composite
,”
Mater. Des.
,
31
(
7
), pp.
3227
3233
.
40.
Wang
,
Y.
,
Miao
,
C.
,
Liu
,
Y.
, and
Meng
,
D.
,
2022
, “
Research on a Sound-Based Method for Belt Conveyor Longitudinal Tear Detection
,”
Measurement
,
190
, p.
110787
.
41.
Fedorko
,
G.
,
Molnar
,
V.
,
Marasova
,
D.
,
Grincova
,
A.
,
Dovica
,
M.
,
Zivcak
,
J.
,
Toth
,
T.
, and
Husakova
,
N.
,
2013
, “
Failure Analysis of Belt Conveyor Damage Caused by the Falling Material. Part II: Application of Computer Metrotomography
,”
Eng. Fail. Anal.
,
34
(
1
), pp.
431
442
.
42.
Fedorko
,
G.
,
Molnar
,
V.
,
Marasova
,
D.
,
Grincova
,
A.
,
Dovica
,
M.
,
Zivcak
,
J.
,
Toth
,
T.
, and
Husakova
,
N.
,
2014
, “
Failure Analysis of Belt Conveyor Damage Caused by the Falling Material. Part I: Experimental Measurements and Regression Models
,”
Eng. Fail. Anal.
,
36
(
1
), pp.
30
38
.
43.
Webb
,
C.
,
Hodkiewicz
,
M.
,
Khan
,
N.
,
Muller
,
S.
,
Wilson
,
R.
, and
Ore
,
B. B. I.
,
2013
, “
Conveyor Belt Wear Life Modelling
,”
CEED Seminar Proceedings
,
Zagreb, Croatia
,
May 20–21
,
Citeseer
, pp.
25
30
.
44.
Harding
,
J.
,
Hodkiewicz
,
M.
,
Khan
,
N.
,
Race
,
C.
,
Wilson
,
R.
, and
Ore
,
B. B. I.
,
2014
, “Conveyor Belt Wear Life Modelling”.
45.
Błażej
,
R.
,
Jurdziak
,
L.
,
Kirjanów
,
A.
, and
Kozłowski
,
T.
,
2017
, “
A Device for Measuring Conveyor Belt Thickness and for Evaluating the Changes in Belt Transverse and Longitudinal Profile
,”
Diagnostyka
,
18
(
4
), pp.
97
102
.
46.
Gatos
,
K.
,
Kameo
,
K.
, and
Karger-Kocsis
,
J.
,
2007
, “
On the Friction and Sliding Wear of Rubber/layered Silicate Nanocomposites
,”
Express Polym. Lett.
,
1
(
1
), pp.
27
31
.
47.
Gibson
,
P.
,
2021
, Bending Fatigue Tests of Drive Belts for the Calwave Energy Converter Rotart PTO, Technical Report, TMT Laboratories.
You do not currently have access to this content.