Three-dimensional fluid-structure interaction was modeled using the coupled lattice Boltzmann and finite element methods. The latter technique was applied to model a structural behavior while the former was used to model a fluid field. For computationally efficient modeling of an external flow over embedded pipes with their interaction, the pipes were modeled using 3D beam elements rather than shell elements. This paper presented an algorithm on how to couple 3D beam elements with the lattice Boltzmann grids so that the fluid-structure interaction could be properly modeled at the outer surfaces of the pipes. Some numerical examples were analyzed using the developed technique, and the fluid-structure interaction characteristics were examined through the examples.

1.
Beckert
,
A.
, 2000, “
Coupling Fluid (CFD) and Structural (FE) Models Using Finite Interpolation Elements
,” Aerospace, Science and Technology (AST), No. 5082.
2.
Kuntz
,
M.
,
Ferreira
,
J. C.
,
Menter
,
F. R.
, and
Oudendijk
,
G. N. M.
, 2002, “
Analysis of Fluid-Structure Interaction With an Improved Coupling Strategy
,”
Proceedings of the Third International Conference Engineering Computational Technology
,
Stirling
,
Scottland
, pp.
85
86
.
3.
Cheng
,
Y.
,
Oertel
,
H.
, and
Schenkel
,
T.
, 2005, “
Fluid-Structure Coupled CFD Simulation of the Left Ventricular Flow During Filling Phase
,”
Ann. Biomed. Eng.
0090-6964,
33
(
5
), pp.
567
576
.
4.
Zienkiewicz
,
O. C.
, and
Newton
,
R. E.
, 1969, “
Coupled Vibration of a Structure Submerged in a Compressible Fluid
,”
Proceedings of the International Symposium on Finite Element Techniques
,
Stuttgart
, May, pp.
1
15
.
5.
Zienkiewicz
,
O. C.
,
Onate
,
E.
, and
Heinrich
,
J. C.
, 1981, “
A General Formulation for Coupled Thermal Flow of Metals Using Finite Elements
,”
Int. J. Numer. Methods Eng.
0029-5981,
17
, pp.
1497
514
.
6.
Lewis
,
R. W.
,
Bettess
,
P.
, and
Hinton
,
E.
, 1984,
Numerical Methods in Coupled Systems
,
Wiley
,
Chichester
.
7.
Bathe
,
K. J.
,
Zhang
,
H.
, and
Wang
,
M. H.
, 1995, “
Finite Element Analysis of Incompressible and Compressible Fluid Flows With Free Surfaces and Structural Interactions
,”
Comput. Struct.
0045-7949,
56
(
2/3
), pp.
193
213
.
8.
Bathe
,
K. J.
,
Zhang
,
H.
, and
Ji
,
S.
, 1999, “
Finite Element Analysis of Fluid Flows Fully Coupled With Structural Interactions
,”
Comput. Struct.
0045-7949,
72
, pp.
1
16
.
9.
Kwon
,
Y. W.
, and
McDermott
,
P. M.
, 2001, “
Effects of Void Growth and Nucleation on Plastic Deformation of Plates Subjected to Fluid-Structure Interaction
,”
ASME J. Pressure Vessel Technol.
0094-9930,
123
, pp.
480
485
.
10.
Newton
,
R. E.
, 1980, “
Finite Element Study of Shock Induced Cavitation
,”
ASCE Spring Conference
,
Portland, OR
.
11.
Zienkiewicz
,
O. C.
,
Paul
,
D. K.
, and
Hinton
,
E.
, 1983, “
Cavitation in Fluid-Structure Response With Particular Reference to Dam Under Earthquake Loading
,”
Earthquake Eng. Struct. Dyn.
0098-8847,
11
, pp.
463
381
.
12.
Bathe
,
K. J.
,
Nitikipaiboon
,
C.
, and
Wang
,
X.
, 1995, “
A Mixed Displacement-Based Finite Element Formulation for Acoustic Fluid-Structure Interaction
,”
Comput. Struct.
0045-7949,
56
, pp.
225
237
.
13.
Kwon
,
Y. W.
, and
Fox
,
P. K.
, 1993, “
Underwater Shock Response of a Cylinder Subjected to a Side on Explosion
,”
Comput. Struct.
0045-7949,
48
(
4
), pp.
637
646
.
14.
Kwon
,
Y. W.
,
Bergensen
,
J. K.
, and
Shin
,
Y. S.
, 1994, “
Effect of Surface Coatings on Cylinders Exposed to Underwater Shock
,”
Shock Vib.
1070-9622,
1
(
3
), pp.
637
646
.
15.
Kwon
,
Y. W.
, and
Cunningham
,
R. E.
, 1998, “
Comparison of USA-DYNA Finite Element Models for a Stiffened Shell Subject to Underwater Shock
,”
Comput. Struct.
0045-7949,
66
(
1
), pp.
127
144
.
16.
Everstine
,
G. C.
, and
Henderson
,
F. M.
, 1990, “
Coupled Finite Element/Boundary Element Approach for Fluid-Structure Interaction
,”
J. Acoust. Soc. Am.
0001-4966,
87
, pp.
1938
1947
.
17.
Giordano
,
J. A.
, and
Koopmann
,
G. H.
, 1995, “
State Space Boundary Element-Finite Element Coupling for Fluid-Structure Interaction Analysis
,”
J. Acoust. Soc. Am.
0001-4966,
98
, pp.
363
372
.
18.
McNamara
,
G.
, and
Zenetti
,
G.
, 1988, “
Use of the Boltzmann Equation to Simulate Lattice-Gas Automata
,”
Phys. Rev. Lett.
0031-9007,
61
, pp.
2332
2335
.
19.
Qian
,
Y. H.
, 1993, “
Simulating Thermodynamics With Lattice BKG Models
,”
J. Sci. Comput.
0885-7474,
8
, pp.
231
241
.
20.
Chen
,
H.
, 1993, “
Discrete Boltzmann Systems and Fluid Flows
,”
Comput. Phys.
0894-1866,
7
, pp.
632
637
.
21.
Cali
,
A.
,
Succi
,
S.
,
Cancelliere
,
A.
,
Benzi
,
R.
, and
Gramingnani
,
M.
, 1992, “
Diffusion and Hydrodynamic Dispersion With the Lattice Boltzmann Method
,”
Phys. Rev. A
1050-2947,
45
, pp.
5771
5774
.
22.
Chen
,
S.
, and
Doolen
,
G. D.
, 1998, “
Lattice Boltzmann Method for Fluid Flow
,”
Annu. Rev. Fluid Mech.
0066-4189,
30
, pp.
329
364
.
23.
Flekkoy
,
E. G.
, 1993, “
Lattice Bhatnagar-Gross-Krook Models for Miscible Fluids
,”
Phys. Rev. E
1063-651X,
47
, pp.
4247
4257
.
24.
Swift
,
M. R.
,
Orlandini
,
E.
,
Osborn
,
W. R.
, and
Yeomans
,
J. M.
, 1996, “
Lattice Boltzmann Simulations of Liquid-Gas and the Binary Fluid Systems
,”
Phys. Rev. E
1063-651X,
54
, pp.
5041
5052
.
25.
Rothman
,
D. H.
, and
Keller
,
J. M.
, 1988, “
Immiscible Cellular-Automaton Fluids
,”
J. Stat. Phys.
0022-4715,
52
(
3–4
), pp.
1119
1127
.
26.
Cates
,
M. E.
,
Desplat
,
J.-C.
,
Stansell
,
P.
,
Wagner
,
A. J.
,
Stratford
,
K.
,
Adhikari
,
R.
, and
Pagonabarraga
,
I.
, 2005, “
Physical and Computational Scaling Issues in Lattice Boltzmann Simulations of Binary Fluid Mixtures
,”
Philos. Trans. R. Soc. London, Ser. A
0962-8428,
363
,(
1833
), pp.
1917
1935
.
27.
Soe
,
M.
,
Vahala
,
G.
,
Pavlo
,
P.
,
Vahala
,
L.
, and
Chen
,
H.
, 1998, “
Thermal Lattice Boltzmann Simulations of Variable Prandtl Number Turbulent Flows
,”
Phys. Rev. E
1063-651X,
57
, pp.
4227
4237
.
28.
Teixeira
,
C.
, 1998, “
Incorporating Turbulence Models Into the Lattice Boltzmann Method
,”
Int. J. Mod. Phys. C
0129-1831,
8
, pp.
1159
1175
.
29.
Chen
,
H.
,
Succi
,
S.
, and
Orszag
,
S.
, 1999, “
Analysis of Subgrid Scale Turbulence Using the Boltzmann Bhatnagar-Gross-Krook Kinetic Equation
,”
Phys. Rev. E
1063-651X,
59
(
3
), pp.
R2527
R2530
.
30.
Peng
,
Y.
,
Shu
,
C.
, and
Chew
,
Y. T.
, 2003, “
Simplified Thermal Lattice Boltzmann Model for Incompressible Thermal Flows
,”
Phys. Rev. E
1063-651X,
68
, p.
026701
.
31.
Shan
,
X.
, 1997, “
Simulation of Rayleigh-Benard Convection Using a Lattice Boltzmann Method
,”
Phys. Rev. E
1063-651X,
55
(
3
), pp.
2780
2788
.
32.
Krafczyk
,
M.
,
Tolke
,
J.
,
Rank
,
E.
, and
Schulz
,
M.
, 2001, “
Two-Dimensional Simulation of Fluid-Structure Interaction Using Lattice-Boltzmann Methods
,”
Comput. Struct.
0045-7949,
79
, pp.
2031
2037
.
33.
Albuquerque
,
P.
,
Alemansi
,
D.
,
Chopard
,
B.
, and
Leone
,
P.
, 2004, “
Coupling a Lattice Boltzmann and Finite Difference Scheme
,”
ICCS 2004
,
M.
Bubak
,
G. D.
van Albada
,
J. J.
Dongarra
, and
P. M. A.
Sloot
, eds., pp.
540
547
.
34.
Geller
,
S.
,
Tolke
,
J.
,
Krafczyk
,
M.
,
Scholz
,
D.
,
Duster
,
A.
, and
Rank
,
E.
, 2005, “
Simulation of Bidirectional Fluid-Structure Interaction Based on Explicit Coupling Approaches of Lattice Boltzmann and P-FEM Solvers
,”
Internatinal Conference on Computational Methods for Coupled Problems in Science and Engineering
,
M.
Papadrakakis
,
E.
Onate
, and
B.
Schrefler
, eds.
35.
Kwon
,
Y. W.
, 2008, “
Coupling of Lattice Boltzmann and Finite Element Methods for Fluid-Tructure Interaction Application
,”
ASME J. Pressure Vessel Technol.
0094-9930,
130
(
1
), p.
011302
.
36.
Bhatnagar
,
P.
,
Gross
,
E. P.
, and
Krook
,
M. K.
, 1954, “
A Model for Collision Process in Gases. I: Small Amplitude Processes in Charged and Neutral One-Component System
,”
Phys. Rev.
0031-899X,
94
, pp.
511
525
.
You do not currently have access to this content.