Abstract

Notched structures widely exist in steam turbine components in fossil power plant, e.g., the groove of the rotor, etc. Previous studies indicate that creep failures occur at the groove of the rotor or the adjacent regions. Thus, it is essential to study the creep failure behavior of the notched structures for the safe operation of the system. In this work, creep tests of the simulated steam turbine component have been conducted at the temperature of 605 °C, and the creep-damage constitutive equation is used to track the evolution behavior of creep strain and damage of this component. The influence of structural and loading configurations on creep failure behavior of the component is discussed. Results demonstrate that the shearing failure at the contact area between the blade root and the rotor is observed for the tested component, while the cracking at the groove of the rotor is not found. Creep-damage constitutive equation employed in this work could provide an adequate solution of the simulated component. Parametric studies indicate that creep crack initiation and creep failure of the simulated components may occur at the contact region (i.e., between the blade root and the rotor) and the groove of the rotor, which is closely related to structural and loading configurations of the components.

References

1.
Lückemeyer
,
N.
,
2012
, “
Structural Mechanics Design Concepts for Large 700 °C Steam Turbine Components in MPA
,”
The University of Stuttgart
, Stuttgart, Germany.
2.
Tu
,
S. T.
,
Xuan
,
F. Z.
, and
Wang
,
W. Z.
,
2009
, “
Some Critical Issues in Creep and Fracture Assessment at High Temperatures
,”
Acta Metall. Sin.
,
45
(
7
), pp.
781
787
.https://www.researchgate.net/publication/286022072_Some_critical_issues_in_creep_and_fracture_assessment_at_high_temperature
3.
Sakurai
,
S.
, and
Isobe
,
N.
,
2010
, “
Life Assessment for Creep and Fatigue of Steam Turbine Components
,”
Trans. Indian Inst. Met.
,
63
(
2–3
), pp.
281
288
.10.1007/s12666-010-0038-5
4.
Shmelev
,
N. G.
,
Gorbatsevich
,
M. I.
,
Kryukov
,
I. I.
, and
Kovalev
,
A. G.
,
2012
, “
Inspection of Rotor Disks of HPT and LPT of TK-10-4 Gas-Compressor Units by the Ultrasonic Flaw Detection Method
,”
Russ. J. Nondestr. Test.
,
48
(
1
), pp.
15
22
.10.1134/S1061830912010093
5.
Kryukov
,
I. I.
,
Leont'ev
,
S. A.
,
Platonov
,
V. S.
, and
Rybnikov
,
A. I.
,
2008
, “
Testing of Discs of Turbine Rotors of Gas Compressors With the Dye Penetrant Nondestructive Testing Technique
,”
Russ. J. Nondestr. Test.
,
44
(
8
), pp.
542
–54
7
.10.1134/S1061830908080044
6.
Gong
,
J. G.
, and
Xuan
,
F. Z.
,
2017
, “
Notch Behavior of Components Under the Stress Controlled Creep-Fatigue Condition: Weakening or Strengthening?
,”
ASME J. Pressure Vessel Technol.
,
139
(
1
), p.
011407
.10.1115/1.4033731
7.
Goyal
,
S.
, and
Laha
,
K.
,
2014
, “
Creep Life Prediction of 9Cr–1Mo Steel Under Multiaxial State of Stress
,”
Mater. Sci. Eng. A
,
615
, pp.
348
360
.10.1016/j.msea.2014.07.096
8.
Goyal
,
S.
,
Laha
,
K.
,
Das
,
C. R.
,
Selvi
,
S. P.
, and
Mathew
,
M. D.
,
2013
, “
Finite Element Analysis of Uniaxial and Multiaxial State of Stress on Creep Rupture Behaviour of 2.25Cr-1Mo Steel
,”
Mater. Sci. Eng. A
,
563
, pp.
68
77
.10.1016/j.msea.2012.11.038
9.
Hyde
,
T. H.
,
Xia
,
L.
, and
Becker
,
A. A.
,
1996
, “
Prediction of Creep Failure in Aeroengine Materials Under Multi-Axial Stress States
,”
Int. J. Mech. Sci.
,
38
(
4
), pp.
385
401
.10.1016/0020-7403(95)00063-1
10.
Hayhurst
,
D. R.
,
Dimmer
,
P. R.
, and
Morrison
,
C. J.
,
1984
, “
Development of Continuum Damage in the Creep Rupture of Notched Bars
,”
Philos. Trans. R. Soc. London A
,
311
(
1516
), pp.
103
129
.10.1098/rsta.1984.0021
11.
Dyson
,
B. F.
, and
Loveday
,
M. S.
,
1981
, “
Creep Fracture in Nimonic 80A Under Triaxial Tensile Stressing
,”
Creep Struct.
, pp.
406
421
.10.1007/978-3-642-81598-0
12.
Telesman
,
J.
,
Gabb
,
T. P.
,
Ghosn
,
L. J.
, and
Gayda
,
J.
,
2016
, “
Effect of Notches on Creep-Fatigue Behavior of a P/M Nickel-Based Superalloy
,”
Int. J. Fatigue
,
87
, pp.
311
325
.10.1016/j.ijfatigue.2016.01.024
13.
Xu
,
X.
,
Wang
,
G. Z.
,
Xuan
,
F. Z.
, and
Tu
,
S. T.
,
2016
, “
Effects of Creep Ductility and Notch Constraint on Creep Fracture Behavior in Notched Bar Specimens
,”
Mater. High Temp.
,
33
(
2
), pp.
198
–207.10.1080/09603409.2016.1144498
14.
Jiang
,
Y. P.
,
Guo
,
W. L.
, and
Yue
,
Z. F.
,
2007
, “
On the Study of the Creep Damage Development in Circumferential Notch Specimens
,”
Comput. Mater. Sci.
,
38
(
4
), pp.
653
659
.10.1016/j.commatsci.2006.04.010
15.
Gong
,
J.-G.
,
Gong
,
C.
,
Xuan
,
F.-Z.
, and
Chen
,
H.
,
2019
, “
Notch Effect on Structural Strength of Components at Elevated Temperature Under Creep, Fatigue, and Creep-Fatigue Loading Conditions: Phenomenon and Mechanism
,”
ASME J. Pressure Vessel Technol.
,
141
(
5
), p.
050801
.10.1115/1.4043843
16.
Cane
,
B. J.
,
1979
, “
Interrelationship Between Creep Deformation and Creep Rupture in 2¼Cr-1Mo Steel
,”
Met. Sci.
,
13
(
5
), pp.
287
–2
94
.10.1179/03063453.1979.11674139
17.
Huddleston
,
R. L.
,
1985
, “
An Improved Multiaxial Creep-Rupture Strength Criterion
,”
ASME J. Pressure Vessel Technol.
,
107
(
4
), pp.
421
429
.10.1115/1.3264476
18.
Hayhurst
,
D. R.
,
1972
, “
Creep Rupture Under Multi-Axial States of Stress
,”
J. Mech. Phys. Solids
,
20
(
6
), pp.
381
390
.10.1016/0022-5096(72)90015-4
19.
Isobe
,
N.
,
Yashirodai
,
K.
, and
Murata
,
K.
,
2014
, “
Creep Damage Assessment for Notched Bar Specimens of a Low Alloy Steel Considering Stress Multiaxiality
,”
Eng. Fract. Mech.
,
123
, pp.
211
222
.10.1016/j.engfracmech.2014.01.017
20.
Kachanov
,
L.
,
1958
, “
Rupture Time Under Creep Conditions
,”
Isv. Akad. Nauk. SSR. Otd. Tekh. Nauk
, 8, pp.
26
31
.
21.
Liu
,
Y.
, and
Murakami
,
S.
,
1998
, “
Damage Localization of Conventional Creep Damage Models and Proposition of a New Model for Creep Damage Analysis
,”
JSME Int. J. Ser. A
,
41
(
1
), pp.
57
65
.10.1299/jsmea.41.57
22.
Rabotnov
,
Y. N.
,
1969
,
Creep Problems in Structural Members
,
North-Holland Pub
.,
Amsterdam, The Netherlands
.
23.
Wen
,
J. F.
, and
Tu
,
S. T.
,
2014
, “
A Multiaxial Creep-Damage Model for Creep Crack Growth Considering Cavity Growth and Microcrack Interaction
,”
Eng. Fract. Mech.
,
123
, pp.
197
210
.10.1016/j.engfracmech.2014.03.001
24.
Rice
,
J. R.
, and
Tracey
,
J. R.
,
1969
, “
On the Ductile Enlargement of Voids in Triaxial Stress Field
,”
J. Mech. Phys. Solids
,
17
(
3
), pp.
201
217
.10.1016/0022-5096(69)90033-7
25.
Cocks
,
A. C. F.
, and
Ashby
,
M. F.
,
1980
, “
Intergranular Fracture During Power-Law Creep Under Multiaxial Stresses
,”
Met. Sci.
,
14
(
8–9
), pp.
395
402
.10.1179/030634580790441187
26.
Wang
,
X.
,
Wang
,
X.
,
Xu
,
Q.
,
Wang
,
C.
,
Zhang
,
Y. L.
, and
Xiao
,
D. M.
,
2020
, “
Investigation on the Validity of Creep Damage Mechanics for the Life Time Prediction of T92 Welded Joint
,”
Int. J. Damage Mech.
,
29
(
3
), pp.
467
481
.10.1177/1056789519860240
27.
Yatomi
,
M.
,
Nikbin
,
K. M.
, and
O'Dowd
,
N. P.
,
2003
, “
Creep Crack Growth Prediction Using a Damage Based Approach
,”
Int. J. Pressure Vessels Piping
,
80
(
7–8
), pp.
573
583
.10.1016/S0308-0161(03)00110-8
28.
Yatomi
,
M.
,
Bettinson
,
A. D.
,
O'Dowd
,
N. P.
, and
Nikbin
,
K. M.
,
2004
, “
Modelling of Damage Development and Failure in Notched-Bar Multiaxial Creep Tests
,”
Fatigue Fract. Eng. Mater. Struct.
,
27
(
4
), pp.
283
295
.10.1111/j.1460-2695.2004.00755.x
29.
Goyal
,
S.
,
Laha
,
K.
,
Das
,
C. R.
,
Panneerselvi
,
S.
, and
Mathew
,
M. D.
,
2013
, “
Finite Element Analysis of Effect of Triaxial State of Stress on Creep Cavitation and Rupture Behaviour of 2.25Cr-1Mo Steel
,”
Int. J. Mech. Sci.
,
75
, pp.
233
243
.10.1016/j.ijmecsci.2013.07.005
30.
Manjoine
,
M. J.
,
1982
, “
Creep-Rupture Behavior of Weldments
,”
Weld. J.
,
61
, pp.
50
57
.
31.
Manjoine
,
M. J.
,
1975
, “
Ductility Indices at Elevated Temperature
,”
ASME J. Eng. Mater. Technol.
,
97
(
2
), pp.
156
161
.10.1115/1.3443276
32.
Horseman
,
G. M.
,
2009
, “
Parsons 500 and 660 MW Steam Turbines: Operating Experience and Lessons Learned
,”
Energy Mater.
,
4
(
4
), pp.
213
237
.10.1179/174892312X13269692039139
33.
Xuan
,
F. Z.
,
Gong
,
J. G.
, and
Niu
,
T. Y.
,
2018
,
Study on the Strength Evaluation and Design Criterion of the Rim of Steam Turbine Rotor Under Creep Condition
,
East China University of Science and Technology
,
Shanghai, China
.
34.
Kloc
,
L.
, and
Sklenička
,
V.
,
2004
, “
Confirmation of Low Stress Creep Regime in 9% Chromium Steel by Stress Change Creep Experiments
,”
Mater. Sci. Eng. A
,
387-389
, pp.
633
638
.10.1016/j.msea.2003.12.078
You do not currently have access to this content.