Abstract

Bolted joints are widely used in mechanical construction due to their ease of disassembly. When the bolting member is subjected to the alternating load, the pretightening force is gradually reduced, which may cause the interface contact performance to decrease, and the surface may be microslipped. Preload relaxation of threaded fasteners is the main factor that influences the joint failure under normal cyclic loading, but it is difficult to monitor the energy dissipation between the interface of the bolted joint. This paper presents an energy dissipation model for the bolted joint based on two-degree-of-freedom vibration differential mathematical model. The parameters of the model is calculated by using the fractal theory and differential operator method. The efficiency of the proposed model is verified by experiments. The results show that the experimental modal shape agrees well with the theoretical modal shape. According to the change of cyclic load and vibration frequency, the vibration response and the law of energy dissipation under different factors can be obtained. The results show that the vibration frequency and cyclic load are the main factors affecting the energy dissipation between interfaces. The energy dissipation of the contact surface of the bolted joints account for the main part of the energy dissipation of the bolted structure. The results provide a theoretical basis for reducing the looseness of the bolt connection and ensuring the reliability of the equipment.

References

1.
Andrew
,
C. J. A.
,
Cockburn
,
A. E.
, and
Waring
,
1967
, “
Paper 22: Metal Surfaces in Contact Under Normal Forces: Some Dynamic Stiffness and Damping Characteristics
,”
Proc. Inst. Mech. Eng.
,
182
(
11
), pp.
92
100
.10.1243/PIME_CONF_1967_182_307_02
2.
Brock
,
L. M.
, and
Georgiadis
,
H. G.
,
1994
, “
Dynamic Frictional Indentation of an Elastic Half-Plane by a Rigid Punch
,”
J. Elasticity
,
35
(
1–3
), pp.
223
249
.10.1007/BF00115544
3.
Ibrahim
,
R. A.
, and
Pettit
,
C. L.
,
2005
, “
Uncertainties and Dynamic Problems of Bolted Joints and Other Fasteners
,”
J. Sound Vib.
,
279
(
3–5
), pp.
857
936
.10.1016/j.jsv.2003.11.064
4.
Beards
,
C. F.
, and
Imam
,
I. M. A.
,
1978
, “
The Damping of Plate Vibration by Interfacial Slip Between Layers
,”
Int. J. Mach. Tool Des. Res.
,
18
(
3
), pp.
131
137
.10.1016/0020-7357(78)90004-5
5.
Ma
,
Q. L.
,
Kahraman
,
A.
,
Perret-Liaudet
,
J.
, and
Rigaud
,
E.
,
2007
, “
An Investigation of Steady-State Dynamic Response of a Sphere-Plane Contact Interface With Contact Loss
,”
ASME J. Appl. Mech.
,
74
(
2
), pp.
249
255
.10.1115/1.2190230
6.
Nassar
,
S. A.
, and
Alkelani
,
A. A.
,
2006
, “
Clamp Load Loss Due to Elastic Interaction and Gasket Creep Relaxation in Bolted Joints
,”
ASME J. Pressure Vessel Technol.
,
128
(
3
), pp.
394
401
.10.1115/1.2218343
7.
Nassar
,
S. A.
,
Wu
,
Z.
, and
Yang
,
X.
,
2010
, “
Achieving Uniform Clamp Load in Gasketed Bolted Joints Using a Nonlinear Finite Element Model
,”
ASME J. Pressure Vessel Technol.
,
132
(
3
), p.
031205
.10.1115/1.4001040
8.
Zhu
,
L.
,
Bouzid
,
A. H.
, and
Hong
,
J.
,
2017
, “
Numerical and Experimental Study of Elastic Interaction in Bolted Flange Joints
,”
ASME J. Pressure Vessel Technol.
,
139
(
2
), p.
021211
.10.1115/1.4035316
9.
Britton
,
R. D.
,
Elcoate
,
C. D.
,
Alanou
,
M. P.
,
Evans
,
H. P.
, and
Snidle
,
R. W.
,
2000
, “
Effect of Surface Finish on Gear Tooth Friction
,”
ASME J. Tribol.
,
122
(
1
), pp.
354
360
.10.1115/1.555367
10.
Xiao
,
L.
,
Rosen
,
B.-G.
,
Amini
,
N.
, and
Nilsson
,
P. H.
,
2003
, “
A Study on the Effect of Surface Topography on Rough Friction in Roller Contact
,”
Wear
,
254
(
11
), pp.
1162
1169
.10.1016/S0043-1648(03)00329-6
11.
Iwan
,
W. D.
,
1967
, “
On a Class of Models for the Yielding Behavior of Continuous and Composite Systems
,”
ASME J. Appl. Mech.
,
34
(
3
), pp.
612
617
.10.1115/1.3607751
12.
Sanliturk
,
K. Y.
,
Imregun
,
M.
, and
Ewins
,
D. J.
,
1997
, “
Harmonic Balance Vibration Analysis of Turbine Blades With Friction Dampers
,”
ASME J. Vib. Acoust.
,
119
(
1
), pp.
96
103
.10.1115/1.2889693
13.
Quinn
,
D.
,
2001
, “
Distributed Friction and Micro-Slip in Mechanical Joints With Varying Degrees-of-Freedom
,”
ASME
Paper No. DETC2001/VIB-21514.10.1115/DETC2001/VIB-21514
14.
Berger
,
E. J.
,
2002
, “
Friction Modelling for Dynamic System Simulation
,”
ASME Appl. Mech. Rev.
,
55
(
6
), pp.
535
557
.10.1115/1.1501080
15.
Gaul
,
L.
, and
Nitsche
,
R.
,
2001
, “
The Role of Friction in Mechanical Joints
,”
ASME Appl. Mech. Rev.
,
54
(
2
), pp.
93
105
.10.1115/1.3097294
16.
Whiteman
,
W. E.
, and
Ferri
,
A. A.
,
1996
, “
Displacement-Dependent Dry Friction Damping of a Beam-Like Structure
,”
J. Sound Vib.
,
198
(
3
), pp.
313
329
.10.1006/jsvi.1996.0572
17.
De Silva
,
C. W.
,
2007
,
Vibration Damping, Control, and Design
,
CRC Press, Boca Raton
, FL.10.1201/9781420053227
18.
Williamson
,
J. B. P.
, and
Greenwood
,
J. A.
,
1966
, “
Contact of Nominally Flat Surfaces
,”
Proc. R. Soc. London
,
295
(
1442
), pp.
300
319
.10.1098/rspa.1966.0242
19.
Majumdar
,
A.
, and
Bhushan
,
B.
,
1991
, “
Fractal Model of Elastic-Plastic Contact Between Rough Surfaces
,”
ASME J. Tribol.
,
113
(
1
), pp.
1
11
.10.1115/1.2920588
20.
Zhao
,
Y.
,
Xu
,
J.
,
Cai
,
L.
,
Shi
,
W.
, and
Liu
,
Z.
,
2017
, “
Stiffness and Damping Model of Bolted Joint Based on the Modified Three-Dimensional Fractal Topography
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
,
231
(
2
), pp.
279
293
.10.1177/0954406216631577
21.
Brake
,
M. R.
,
2012
, “
An Analytical Elastic-Perfectly Plastic Contact Model
,”
Int. J. Solids Struct.
,
49
(
22
), pp.
3129
3141
.10.1016/j.ijsolstr.2012.06.013
22.
Ji
,
C.
,
Zhu
,
H.
, and
Jiang
,
W.
,
2013
, “
Fractal Prediction Model of Thermal Contact Conductance of Rough Surfaces
,”
Chin. J. Mech. Eng.
,
26
(
1
), pp.
128
136
.10.3901/CJME.2013.01.128
23.
Wang
,
R.
,
Zhu
,
L.
, and
Zhu
,
C.
,
2017
, “
Research on Fractal Model of Normal Contact Stiffness for Mechanical Joint Considering Asperity Interaction
,”
Int. J. Mech. Sci.
,
134
, pp.
357
369
.10.1016/j.ijmecsci.2017.10.019
24.
Mandelbrot
,
B. B.
,
1985
, “
Self-Affine Fractals and Fractal Dimension
,”
Phys. Scr.
,
32
(
4
), pp.
257
260
.10.1088/0031-8949/32/4/001
25.
Zhang
,
R. Z.
, and
Cai
,
B. W.
,
2000
, “
Numerical Method of the Power Spectral Density
,”
High Power Laser Particle Beams
, 2000, pp.
661
664
.https://www.researchgate.net/publication/291524087_Numerical_method_of_the_power_spectral_density
You do not currently have access to this content.