Abstract

In this study, the nonlinear pressure-flow characteristics of a spring-loaded pressure relief valve (PRV), which is used in the automotive fuel supply system for pressure control is analyzed, and its characteristics are improved by means of geometrical modifications of the valve structure. Given the complexity of the coupling mechanism between the valve internal flow characteristics and spring system, a quasi-steady computational fluid dynamics (CFD) method is introduced to predict the nonlinear pressure-flow characteristic curve of the valve and the accuracy is validated by experimental data. The total hydraulic force on the valve spool and diaphragm are divided into three parts according to the loading position and the correlation between the internal flow characteristics, hydraulic force, and pressure-flow characteristics of the valve are explained by CFD analysis and visualization. The results show that the quasi-steady CFD method can accurately predict the trends of the valve nonlinear pressure-flow characteristic curve, which is mainly determined by the hydraulic force produced in the middle chamber of the valve. When the valve opening reaches a certain value, a main vortex would be formed in the middle chamber and lead to the sudden increase of hydraulic force which causes the fluctuation of the pressure-flow characteristic curve of the valve. It is also found that the toggle point for the flow regimes seen in the valve is affected by the geometric structure of the middle chamber and the pressure-flow characteristics can be improved by the round corner size modification.

References

1.
Dimitrov
,
S.
,
2013
, “
Investigation of Static Characteristics of Pilot Operated Pressure Relief Valves
,”
Int. J. Eng.
,
11
(
2
), pp.
201
206
.https://eprints.ugd.edu.mk/8217/
2.
Long
,
C.
, and
Guan
,
J.
,
2011
, “
A Method for Determining Valve Coefficient and Resistance Coefficient for Predicting Gas Flowrate
,”
Exp. Therm. Fluid Sci.
,
35
(
6
), pp.
1162
1168
.10.1016/j.expthermflusci.2011.04.001
3.
Jeong
,
H.
, and
Kim
,
H.
,
2002
, “
Experimental Based Analysis of the Pressure Control Character of an Oil Hydraulic Three-Way on/Off Solenoid Valve Controlled by PWM Signal
,”
ASME J. Dyn. Syst.
, 124(1), pp.
196
205
.10.1115/1.1433483
4.
Weaver
,
D. S.
, and
Ziada
,
S.
,
1980
, “
A Theoretical Model for Self-Excited Vibrations in Hydraulic Gates, Valves and Seals
,”
ASME J. Pressure Vessel Technol.
,
102
(
2
), pp.
146
151
.10.1115/1.3263313
5.
Bouzidi
,
S. E.
,
Hassan
,
M.
, and
Ziada
,
S.
,
2018
, “
Self-Excited Vibrations of Spring-Loaded Valves Operating at Small Pressure Drops
,”
J. Fluids Struct.
,
83
, pp.
72
90
.10.1016/j.jfluidstructs.2018.08.018
6.
Bouzidi
,
S. E.
,
Hassan
,
M.
, and
Ziada
,
S.
,
2018
, “
Experimental Characterisation of the Self-Excited Vibrations of Spring-Loaded Valves
,”
J. Fluids Struct.
,
76
, pp.
558
572
.10.1016/j.jfluidstructs.2017.11.007
7.
Wu
,
D.
,
Li
,
S.
, and
Wu
,
P.
,
2015
, “
CFD Simulation of Flow-Pressure Characteristics of a Pressure Control Valve for Automotive Fuel Supply System
,”
Energy Convers. Manage.
,
101
, pp.
658
665
.10.1016/j.enconman.2015.06.025
8.
Valdés
,
J. R.
,
Rodríguez
,
J. M.
,
Saumell
,
J.
, and
Pütz
,
T.
,
2014
, “
A Methodology for the Parametric Modelling of the Flow Coefficients and Flow Rate in Hydraulic Valves
,”
Energy Convers. Manage.
,
88
, pp.
598
611
.10.1016/j.enconman.2014.08.057
9.
Lisowski
,
E.
, and
Filo
,
G.
,
2016
, “
CFD Analysis of the Characteristics of a Proportional Flow Control Valve With an Innovative Opening Shape
,”
Energy Convers. Manage.
,
123
, pp.
15
28
.10.1016/j.enconman.2016.06.025
10.
Asim
,
T.
,
Charlton
,
M.
, and
Mishra
,
R.
,
2017
, “
CFD Based Investigations for the Design of Severe Service Control Valves Used in Energy Systems
,”
Energy Convers. Manage.
,
153
, pp.
288
303
.10.1016/j.enconman.2017.10.012
11.
Chern
,
M. J.
,
Wang
,
C. C.
, and
Ma
,
C. H.
,
2007
, “
Performance Test and Flow Visualization of Ball Valve
,”
Exp. Therm. Fluid Sci.
,
31
(
6
), pp.
505
512
.10.1016/j.expthermflusci.2006.04.019
12.
Song
,
X. G.
,
Cui
,
L.
,
Cao
,
M.
,
Cao
,
W.
,
Park
,
Y.
, and
Dempster
,
W. M.
,
2014
, “
A CFD Analysis of the Dynamics of a Direct-Operated Safety Relief Valve Mounted on a Pressure Vessel
,”
Energy Convers. Manage.
,
81
, pp.
407
419
.10.1016/j.enconman.2014.02.021
13.
Ramanath
,
H. S.
, and
Chua
,
C. K.
,
2006
, “
Application of Rapid Prototyping and Computational Fluid Dynamics in the Development of Water Flow Regulating Valves
,”
Int. J. Adv. Manuf. Technol.
,
30
(
9–10
), pp.
828
835
.10.1007/s00170-005-0119-5
14.
Vu
,
B.
,
Wang
,
T. S.
,
Shih
,
M. H.
, and
Soni
,
S. B.
,
1994
, “
Navier-Stokes Flow Field Analysis of Compressible Flow in a High Pressure Safety Relief Valve
,”
Appl. Math. Comput.
,
65
(
1–3
), pp.
345
353
.10.1016/0096-3003(94)90187-2
15.
Chattopadhyay
,
H.
,
Kundu
,
A.
,
Saha
,
B. K.
, and
Gangopadhyay
,
T.
,
2012
, “
Analysis of Flow Structure Inside a Spool Type Pressure Regulating Valve
,”
Energy Convers. Manage.
,
53
(
1
), pp.
196
204
.10.1016/j.enconman.2011.08.021
16.
Qian
,
J. Y.
,
Gao
,
Z. X.
,
Liu
,
B. Z.
, and
Jin
,
Z. J.
,
2018
, “
Parametric Study on Fluid Dynamics of Pilot-Control Angle Globe Valve
,”
ASME J. Fluids Eng.
,
140
(
11
), p. 111103.10.1115/1.4040037
17.
Zhang
,
J.
,
Yang
,
L.
,
Dempster
,
W.
,
Yu
,
X.
,
Jia
,
J.
, and
Tu
,
S. T.
,
2018
, “
Prediction of Blowdown of a Pressure Relief Valve Using Response Surface Methodology and CFD Techniques
,”
Appl. Therm. Eng.
,
133
, pp.
713
726
.10.1016/j.applthermaleng.2018.01.079
18.
Kim
,
H.
,
Kim
,
S.
,
Kim
,
Y.
, and
Kim
,
J.
,
2018
, “
Optimization of Operation Parameters for Direct Spring Loaded Pressure Relief Valve in a Pipeline System
,”
ASME J. Pressure Vessel Technol.
,
140
(
5
), p. 051603.10.1115/1.4040361
19.
Li
,
S.
,
Wu
,
P.
,
Cao
,
L.
,
Wu
,
D.
, and
She
,
Y.
,
2017
, “
CFD Simulation of Dynamic Characteristics of a Solenoid Valve for Exhaust Gas Turbocharger System
,”
Appl. Therm. Eng.
,
110
, pp.
213
22
.10.1016/j.applthermaleng.2016.08.155
20.
Cho
,
T. D.
,
Yang
,
S. M.
,
Lee
,
H. Y.
, and
Ko
,
S. H.
,
2007
, “
A Study on the Force Balance of an Unbalanced Globe Valve
,”
J. Mech. Sci. Technol.
,
21
(
5
), pp.
814
820
.10.1007/BF02916360
21.
Lisowski
,
E.
,
Czyżycki
,
W.
, and
Rajda
,
J.
,
2013
, “
Three Dimensional CFD Analysis and Experimental Test of Flow Force Acting on the Spool of Solenoid Operated Directional Control Valve
,”
Energy Convers. Manage.
,
70
, pp.
220
229
.10.1016/j.enconman.2013.02.016
22.
Amirante
,
R.
,
Andrea Catalano
,
L.
, and
Tamburrano
,
P.
,
2014
, “
The Importance of a Full 3D Fluid Dynamic Analysis to Evaluate the Flow Forces in a Hydraulic Directional Proportional Valve
,”
Eng. Comput.
,
31
(
5
), pp.
898
922
.10.1108/EC-09-2012-0221
23.
Rundo
,
M.
,
Altare
,
G.
, and
Olivetti
,
M.
,
2016
, “
3D Dynamic Simulation of a Flow Force Compensated Pressure Relief Valve
,”
ASME
Paper No. IMECE2016-65624.10.1115/IMECE2016-65624
24.
Valdés
,
J. R.
,
Miana
,
J. M.
,
Núñez
,
J. L.
, and
Pütz
,
T.
,
2008
, “
Reduced Order Model for Estimation of Fluid Flow and Flow Forces in Hydraulic Proportional Valves
,”
Energy Convers. Manage.
,
49
(
6
), pp.
1517
1529
.10.1016/j.enconman.2007.12.010
25.
Budziszewski
,
A.
, and
Thoren
,
L.
,
2012
, “
CFD Simulation of a Safety Relief Valve for Improvement of a One-Dimensional Valve Model in RELAP5
,”
Master's thesis
, No. CTH-NT-260.https://hdl.handle.net/20.500.12380/178850
26.
Hayashi
,
S.
,
Hayase
,
T.
, and
Kurahashi
,
T.
,
1997
, “
Chaos in a Hydraulic Control Valve
,”
J. Fluids Struct.
,
11
(
6
), pp.
693
716
.10.1006/jfls.1997.0096
You do not currently have access to this content.