Abstract

As a lesson learned from the Fukushima nuclear accident, the importance of accident mitigation for beyond design basis events (BDBEs) is recognized. Excessive earthquake is a typical BDBE. During such events, the fast reactor main vessel (FRMV) is vulnerable to buckling because of its thin-walled cylindrical structure. Buckling deformation without causing immediate collapse should not be considered as a limit state in BDBEs. Instead, the objective is to achieve a stable post-buckling state. In the present study, dynamic post-buckling behavior of thin-walled cylinders under intense horizontal vibration is experimentally studied, which simulates loop-type FRMV design. Finite element method (FEM) simulation is also conducted and validated by experimental data. Based on results analysis, a global response stability after buckling is confirmed. The buckled model shows resilience to withstand catastrophic collapse even when intense excitation continues to apply. Using equivalent linear response method, dynamic mechanisms behind the stability are revealed. Due to substantial degradation of structural stiffness, the post-buckling response shifts into the out-of-phase domain such that response divergence is prevented. Meanwhile, the response is notably delayed from the input, which impedes the conversion of input energy into kinetic energy, reducing the inertial impact to the structure. These mechanisms are found to be independent of input waveforms and can be applied to a general seismic scenario. Moreover, the limit for global response stability after buckling and the effect of input frequency on the post-buckling behavior are clarified.

References

1.
Kasahara
,
N.
,
Sato
,
T.
, and
Blahoianu
,
A.
,
2018
, “
Contribution to Safety Enhancement for BDBE in Structure and Material Fields
,” ASME Paper No. PVP2018-84353. 10.1115/PVP2018-84353
2.
Kasahara
,
N.
,
Wakai
,
T.
,
Nakamura
,
I.
, and
Sato
,
T.
,
2019
, “
Research Plan and Progress to Realize Fracture Control of Nuclear Components
,” ASME Paper No. PVP2019-93545. 10.1115/PVP2019-93545
3.
Lyu
,
J.
,
Ichimiya
,
M.
,
Sasaki
,
R.
, and
Kasahara
,
N.
,
2020
, “
Ratcheting Occurrence Conditions of Piping Under Sinusoidal Excitations
,”
JSME Mech. Eng. J.
,
7
(
4
), p. 20-00167.
4.
Lyu
,
J.
,
Ichimiya
,
M.
,
Bari
,
M. A. A.
,
Sasaki
,
R.
, and
Kasahara
,
N.
,
2020
, “
Study on Ratcheting of Beams Under the Combination of Gravity and Seismic Load
,”
JSME Mech. Eng. J.
,
7
(
3
), p. 19-00384.
5.
IAEA Safety Standards
,
2016
, “
Safety of Nuclear Power Plants: Design
,”
International Atomic Energy Agency
,
Vienna, Austria
, No. SSR-2/1 (Rev. 1).https://wwwpub.iaea.org/MTCD/Publications/PDF/Pub1715web-46541668.pdf
6.
Canadian Standards Association (CSA)
,
2016
, “
Requirements for Beyond Design Basis Accidents
,”
CSA
,
Toronto, ON, Canada
, Standard No. CSA N290.16.
7.
Kasahara
,
N.
,
Wakai
,
T.
, and
Nakamura
,
I.
,
2020
, “
Application of Fracture Control to Mitigate Failure Consequence Under BDBE
,” ASME Paper No. PVP2020-21072. 10.1115/PVP2020-21072
8.
Hagiwara
,
Y.
,
Akiyama
,
H.
,
Kokubo
,
K.
, and
Sawada
,
Y.
,
1991
, “
Post-Buckling Behavior During Earthquakes and Seismic Margin of FBR Main Vessels
,”
Int. J. Pressure Vessel Piping
,
45
(
3
), pp.
259
271
.10.1016/0308-0161(91)90001-I
9.
Kasahara
,
N.
,
Al Bari
,
M.
, and
Sakemi
,
R.
,
2020
, “
Failure Modes of Piping Under Seismic Loads Which Have Both Load and Displacement-Controlled Characteristics
,”
Int. J. Pressure Vessel Piping
,
179
, p.
103938
.10.1016/j.ijpvp.2019.103938
10.
Hirde
,
D. S. K.
, and
Mohabansi
,
A. S.
,
2014
, “
Seismic Evaluation of Steel Silos With Different Aspect Ratio
,”
J. Emerging Technol. Innovative Res.
,
9
(
9
), pp.
868
875
.
11.
Hamdan
,
F. H.
,
2000
, “
Seismic Behavior of Cylindrical Steel Liquid Storage Tanks
,”
J. Constr. Steel Res.
,
53
(
3
), pp.
307
333
.10.1016/S0143-974X(99)00039-5
12.
Virella
,
J. C.
,
Godoy
,
L. A.
, and
Suárez
,
L. E.
,
2006
, “
Dynamic Buckling of Anchored Steel Tanks Subjected to Horizontal Earthquake Excitation
,”
J. Constr. Steel Res.
,
62
(
6
), pp.
521
531
.10.1016/j.jcsr.2005.10.001
13.
Nie
,
G.
,
Zhang
,
C.
,
Li
,
D.
,
Chen
,
Q.
, and
Wang
,
Z.
,
2021
, “
Collapse of the Spatial Double-Layer Cylinder Shell by Experimental Study
,”
Eng. Struct.
,
245
, p.
112862
.10.1016/j.engstruct.2021.112862
14.
Hagiwara
,
Y.
,
Kawamoto
,
Y.
,
Nakagawa
,
M.
, and
Akiyama
,
H.
,
1993
, “
Dynamic Buckling and Nonlinear Response of Fast Breeder Reactor Main Vessels Under Earthquake Loading
,”
JSME Int. J. Ser. B
,
36
(
3
), pp.
476
484
.10.1299/jsmeb.36.476
15.
Akiyama
,
H.
,
Ohtsubo
,
H.
,
Nakamura
,
H.
,
Matsuura
,
S.
,
Hagiwara
,
Y.
,
Yuhara
,
T.
,
Hirayama
,
H.
,
Kokubo
,
K.
, and
Ooka
,
Y.
,
1993
, “
Outline of the Seismic Buckling Design Guideline of an FBR-a Tentative Draft
,”
Nucl. Eng. Des.
,
140
(
3
), pp.
319
330
.10.1016/0029-5493(93)90115-P
16.
Ogiso
,
S.
,
Sasaki
,
T.
, and
Ooka
,
Y.
,
1993
, “
Cyclic Post-Buckling Tests for Low Cycle Fatigue Failure of Buckled Cylinders by Shear and Bending Modes
,”
IASMiRT-12
,
Germany
, Stuttgart, Aug.
15
20
.https://inis.iaea.org/search/search.aspx?orig_q=RN:36010577
17.
Ogiso
,
S.
,
Sasaki
,
T.
, and
Ooka
,
Y.
,
1995
, “
Estimation of Post-Buckling Fatigue Damage for LMFBR Reactor Vessel Under Seismic Load
,”
IASMiRT-13
,
Porto Alegre, Brazil
, Aug.
13
18
.http://www.lib.ncsu.edu/resolver/1840.20/25375
18.
Matsuura
,
S.
,
Nakamura
,
H.
,
Ogiso
,
S.
,
Murakami
,
T.
, and
Kawamoto
,
Y.
,
1993
, “
Formulae for Evaluating Buckling Strength of FBR Main Vessels Under Earthquake Loading
,”
JSME Int. J. Ser. B
,
36
(
3
), pp.
485
492
.10.1299/jsmeb.36.485
19.
Matsuura
,
S.
,
Nakamura
,
H.
,
Kokubo
,
K.
,
Ogiso
,
S.
, and
Ohtsubo
,
H.
,
1995
, “
Shear-Bending Buckling Analyses of Fast Breeder Reactor Main Vessels
,”
Nucl. Eng. Des.
,
153
(
2–3
), pp.
305
317
.10.1016/0029-5493(95)90021-7
20.
Nakamura
,
H.
,
Matsuura
,
S.
,
Kawamoto
,
Y.
, and
Yuhara
,
T.
,
1998
, “
Studies on the Seismic Buckling Design Guideline of FBR Main Vessels-Effect of Thermal Loads on Shear-Bending Buckling Strength of Main Vessels
,”
JSME Int. J. Ser. A
,
41
(
4
), pp.
554
561
.10.1299/jsmea.41.554
21.
Nakagawa
,
M.
,
Fukuyama
,
M.
,
Ishihama
,
K.
,
Ikeuchi
,
H.
,
Hagiwara
,
Y.
, and
Akiyama
,
H.
,
1995
, “
Pseudo-Dynamic Buckling Experiments on Thin Cylindrical Shells Under Biaxial Seismic Loads
,”
Nucl. Eng. Des.
,
157
(
1–2
), pp.
27
36
.10.1016/0029-5493(95)00983-J
22.
Akiyama
,
H.
,
1987
, “
Post-Buckling Behavior of Steel Cylindrical Shells During Earthquakes
,”
Transactions of the 9th International Conference on Structural Mechanics in Reactor Technology
, Lausanne, Switzerland, Aug. 17–21, Vol.
K1
, pp.
415
420
.
23.
Kokubo
,
K.
,
Nakamura
,
N.
,
Madokoro
,
M.
, and
Sakurai
,
A.
,
1987
, “
Buckling Behaviors of Short Cylindrical Shells Under Dynamic Loads
,”
Transactions of the 9th International Conference on Structural Mechanics in Reactor Technology
, Lausanne, Switzerland, Aug. 17–21, Vol. E, pp.
167
172
.
24.
Koo
,
G. H.
,
Yoo
,
B.
, and
Kim
,
J. B.
,
2001
, “
Buckling Limit Evaluation for Reactor Vessel of KALIMER Liquid Metal Reactor Under Lateral Seismic Loads
,”
Int. J. Pressure Vessel Piping
,
78
(
5
), pp.
312
330
.
25.
Athiannan
,
K.
, and
Palaninathan
,
R.
,
2004
, “
Buckling of Cylindrical Shells Under Transverse Shear
,”
Thin-Walled Struct.
,
42
(
9
), pp.
1307
1328
.10.1016/j.tws.2004.03.019
26.
Chellapandi
,
P.
,
Chetal
,
S. C.
, and
Baldev
,
R.
,
2008
, “
Investigation on Buckling of FBR Vessels Under Seismic Loadings With Fluid Structure Interactions
,”
Nucl. Eng. Des.
,
238
(
12
), pp.
3208
3217
.10.1016/j.nucengdes.2008.08.009
27.
Koo
,
G. H.
, and
Kim
,
S. H.
,
2011
, “
Buckling Limit Evaluations for Reactor Vessel of ABTR
,”
J. Mech. Sci. Technol.
,
25
(
5
), pp.
1193
1199
.10.1007/s12206-011-0222-5
28.
Athiannan
,
K.
, and
Palaninathan
,
R.
,
2004
, “
Experimental Investigations on Buckling of Cylindrical Shells Under Axial Compression and Transverse Shear
,”
Sadhana
,
29
(
1
), pp.
93
115
.10.1007/BF02707003
29.
Okafuji
,
T.
,
Miura
,
K.
,
Sago
,
H.
,
Murakami
,
H.
,
Ando
,
M.
, and
Miyazaki
,
M.
,
2020
, “
Development of the Buckling Evaluation Method for Large Scale Vessel by the Testing of Gr. 91 Vessel Subjected to Vertical and Horizontal Loading
,” ASME Paper No. PVP2020-21328. 10.1115/PVP2020-21328
30.
Okafuji
,
T.
,
Miura
,
K.
,
Sago
,
H.
,
Murakami
,
H.
,
Ando
,
M.
, and
Okajima
,
S.
,
2022
, “
Development of the Buckling Evaluation Method for Large Scale Vessel in Fast Reactors by the Testing of Austenitic Stainless Steel Vessel With Severe Initial Imperfection Subjected to Horizontal and Vertical Loading
,” ASME Paper No. PVP2022-84605. 10.1115/PVP2022-84605
31.
Ye
,
Y.
,
Ichimiya
,
M.
,
Kasahara
,
N.
, and
Takahashi
,
Y.
,
2024
, “
Study on Post-Buckling Crack Propagation in Thin-Walled Cylinders Under Dynamic Cyclic Load
,”
Mech. Eng. J.
,
11
(
1
), p. 23-00491.10.1299/mej.23-00491
32.
Yamano
,
H.
,
Futagami
,
S.
, and
Ando
,
M.
,
2023
, “
Structural Analysis of a Reactor Vessel in a Sodium-Cooled Fast Reactor Under Extremely High Temperature Conditions
,”
JSME Mech. Eng. J.
,
10
(
4
), p. 23-00043.10.1299/mej.23-00043
33.
Enuma
,
Y.
,
Kawasaki
,
N.
,
Orita
,
J.
, et al.,
2015
, “
JSFR Design Progress Related to Development of Safety Design Criteria for Generation IV Sodium-Cooled Fast Reactors (3) Progress of Component Design
,”
Proceedings of the 23rd International Conference on Nuclear Engineering (ICONE23)
,
Chiba, Japan
, May 2015, Paper No. ICONE23-1492.https://jopss.jaea.go.jp/search/servlet/search?5051615&language=1
34.
Asayama
,
T.
, and
Nakayama
,
Y.
,
2012
, “
Development of the JSME Rules on Design and Construction for Nuclear Power Plants (Division 2: Fast Reactors)
,”
Trans. Jpn. Soc. Mech. Eng. Ser. A
,
78
(
790
), pp.
778
782
.10.1299/kikaia.78.778
35.
Uang
,
C.
, and
Bertero
,
V. V.
,
1990
, “
Evaluation of Seismic Energy in Structures
,”
Earthquake Eng. Struct. Dyn.
,
19
(
1
), pp.
77
90
.10.1002/eqe.4290190108
36.
Molina
,
F.
, and
Pegon
,
P.
,
2021
, “
Least-Square Effective Stiffness to Be Used for Equivalent Linear Model
,”
Energy-Based Seismic Engineering. IWEBSE 2021. Lecture Notes in Civil Engineering
, Vol.
155
,
A.
Benavent-Climent
, and
F.
Mollaioli
, eds.,
Springer
,
Cham
.
37.
Weingarten, V.T., Seide, P., and Peterson, J.P.
,
1968
, “
Buckling of Thin-Walled Circular Cylinders
,” NASA Technical Reports, Report No. NASA-SP-8007.https://ntrs.nasa.gov/citations/19690013955
You do not currently have access to this content.