Abstract

In response to the problem of creep-fatigue interaction damage failure of aero-engine turbine blade material, based on the modified damage evolution model of Kachanov-Rabotnov and Chaboche, a creep-fatigue life prediction model for nickel-based superalloy DZ125 is constructed considering the nonholding effect and coupling effect of stress and high temperature with the nonlinear interaction and superposition of creep damage and fatigue damage according to the continuum damage mechanics theory. Simultaneously, the microfracture morphology of DZ125 was analyzed using a scanning electron microscope, revealing the micromechanism of creep-fatigue interaction. The research results manifest that the creep-fatigue life prediction model has a high life prediction ability within ±2.0 times the dispersion band of the prediction results. Concurrently, a large number of intertwined tearing edges, microcracks, and microvoids appear in the fracture morphology, and creep and fatigue interact with each other in the form of effective stress. The above research can provide theoretical support for predicting the lifespan of mechanical structures in a high-temperature environment.

References

1.
Han
,
L.
,
Li
,
P. Y.
,
Yu
,
S. J.
,
Chen
,
C.
,
Fei
,
C. W.
, and
Lu
,
C.
,
2022
, “
Creep/Fatigue Accelerated Failure of Ni-Based Superalloy Turbine Blade: Microscopic Characteristics and Void Migration Mechanism
,”
Int. J. Fatigue
,
154
, p.
106558
.10.1016/j.ijfatigue.2021.106558
2.
Skamniotis
,
C.
,
Grilli
,
N.
, and
Cocks
,
A. C.
,
2023
, “
Crystal Plasticity Analysis of Fatigue-Creep Behavior at Cooling Holes in Single Crystal Nickel Based Gas Turbine Blade Components
,”
Int. J. Plast.
,
166
, p.
103589
.10.1016/j.ijplas.2023.103589
3.
Wang
,
X. X.
,
Yang
,
J.
,
Chen
,
H. F.
, and
Xuan
,
F. Z.
,
2023
, “
Physics-Based Probabilistic Assessment of Creep-Fatigue Failure for Pressurized Components
,”
Int. J. Mech. Sci.
,
250
, p.
108314
.10.1016/j.ijmecsci.2023.108314
4.
Chavoshi
,
S. Z.
, and
Tagarielli
,
V. L.
,
2023
, “
Data‐Driven Prediction of the Probability of Creep–Fatigue Crack Initiation in 316H Stainless Steel
,”
Fatigue Fract. Eng. Mater. Struct.
, 46(1), pp. 212–227.10.1111/ffe.13858
5.
Taira
,
S.
,
1962
, “
Lifetime of Structures Subjected to Varying Load and Temperature
,”
Creep in Structures: Colloquium Held at Stanford University
,
Springer
,
Berlin
, pp.
96
124
.
6.
Lagneborg
,
R.
, and
Attermo
,
R.
,
1971
, “
The Effect of Combined Low-Cycle Fatigue and Creep on the Life of Austenitic Stainless Steels
,”
Metall. Trans.
,
2
(
7
), pp.
1821
1827
.10.1007/BF02913411
7.
Jin
,
Y.
,
Sun
,
Y. F.
,
Sun
,
X. F.
,
Deng
,
Y.
,
Liu
,
H. J.
, and
Tu
,
Y.
,
2000
, “
Approach of Life Prediction for Creep/Fatigue Interaction
,”
Mater. Eng.
,
11
, pp.
6
8
.https://www.researchgate.net/publication/289840880_Approach_of_life_prediction_for_creepfatigue_interaction
8.
Wang
,
Y. J.
,
Wang
,
X. H.
,
Yang
,
Y. F.
,
Lan
,
X.
,
Zhang
,
Z.
, and
Li
,
H.
,
2022
, “
Study on Creep-Fatigue Mechanical Behavior and Life Prediction of Ti2AlNb-Based Alloy
,”
Materials
,
15
(
18
), p.
6238
.10.3390/ma15186238
9.
Zhang
,
H. B.
,
Shi
,
D. Q.
,
Li
,
Z. L.
,
Huang
,
J.
, and
Yang
,
X. G.
,
2022
, “
Creep‐Fatigue Behavior of Thin‐Walled Plate With Holes: Stress State Characterization and Life Estimation
,”
Fatigue Fract. Eng. Mater. Struct.
,
45
(
10
), pp.
3053
3066
.10.1111/ffe.13780
10.
Wang
,
X.
,
Gao
,
M.
,
Chen
,
S. T.
,
Wu
,
P.
, and
Zhao
,
R.
,
2019
, “
Creep-Fatigue Damage Analysis of Solid Rocket Motor Grain on-Board
,”
J. Propul. Technol.
,
40
(
4
), pp.
921
928
.
11.
Mao
,
H. Y.
, and
Mahadevan
,
S.
,
2000
, “
Reliability Analysis of Creep–Fatigue Failure
,”
Int. J. Fatigue
,
22
(
9
), pp.
789
797
.10.1016/S0142-1123(00)00046-3
12.
Skelton
,
R. P.
, and
Gandy
,
D.
,
2008
, “
Creep–Fatigue Damage Accumulation and Interaction Diagram Based on Metallographic Interpretation of Mechanisms
,”
Mater High Temp.
,
25
(
1
), pp.
27
54
.10.3184/096034007X300494
13.
Li
,
H. Z.
,
Chen
,
H.
,
Xu
,
L. Y.
,
Wang
,
Q. Y.
,
Liu
,
Y. J.
,
Chen
,
Y.
,
Li
,
L.
,
Zhang
,
H.
, and
He
,
C.
,
2021
, “
A Creep Damage Model for Low Cycle Fatigue Based on the Equivalent Creep Stress: Establishment, Verification and Application
,”
Eng. Fract. Mech.
,
256
, p.
107899
.10.1016/j.engfracmech.2021.107899
14.
Xia
,
F. L.
,
Zhu
,
S. P.
,
Liao
,
D.
,
Dantas
,
R.
,
Correia
,
J. A.
, and
De Jesus
,
A. M.
,
2020
, “
Isodamage Curve-Based Fatigue Damage Accumulation Model Considering the Exhaustion of Static Toughness
,”
Eng. Fail. Anal.
,
115
, p.
104575
.10.1016/j.engfailanal.2020.104575
15.
Wang
,
R. Z.
,
Zhang
,
X. C.
,
Tu
,
S. T.
,
Zhu
,
S. P.
, and
Zhang
,
C. C.
,
2016
, “
A Modified Strain Energy Density Exhaustion Model for Creep–Fatigue Life Prediction
,”
Int. J. Fatigue
,
90
, pp.
12
22
.10.1016/j.ijfatigue.2016.03.005
16.
Song
,
K.
,
Zhao
,
L.
,
Xu
,
L. Y.
,
Han
,
Y.
, and
Hao
,
K. D.
,
2022
, “
A Modified Energy Model Including Mean Stress and Creep Threshold Stress Effect for Creep–Fatigue Life Prediction
,”
Fatigue Fract. Eng. Mater. Struct.
,
45
(
5
), pp.
1299
1316
.10.1111/ffe.13661
17.
Mao
,
J. F.
,
Li
,
X. Y.
,
Wang
,
D. S.
,
Zhong
,
F. P.
,
Luo
,
L. J.
,
Bao
,
S. Y.
, and
Ding
,
Z. Y.
,
2021
, “
Experimental Study on Creep-Fatigue Behaviors of Chinese P92 Steel With Consideration of Several Important Factors
,”
Int. J. Fatigue
,
142
, p.
105900
.10.1016/j.ijfatigue.2020.105900
18.
Sun
,
L.
,
Zhang
,
X. C.
,
Wang
,
R. Z.
,
Wang
,
X. W.
,
Tu
,
S. T.
,
Suzuki
,
K.
, and
Miura
,
H.
,
2023
, “
Evaluation of Fatigue and Creep-Fatigue Damage Levels on the Basis of Engineering Damage Mechanics Approach
,”
Int. J. Fatigue
,
166
, p.
107277
.10.1016/j.ijfatigue.2022.107277
19.
Guo
,
Y. H.
,
Liu
,
G.
,
Jiao
,
T. Z.
,
Hu
,
X.
,
Zhang
,
H.
, and
Liu
,
M.
,
2023
, “
Creep-Fatigue Damage Behavior of a Titanium Alloy at Room Temperature: Experiments and Modeling
,”
Int. J. Mech. Sci.
,
245
, p.
108135
.10.1016/j.ijmecsci.2023.108135
20.
Rai
,
R. K.
,
Sahu
,
J. K.
,
Das
,
S. K.
,
Paulose
,
N.
, and
Fernando
,
C.
,
2020
, “
Creep‐Fatigue Deformation Micromechanisms of a Directionally Solidified Nickel‐Base Superalloy at 850 °C
,”
Fatigue Fract. Eng. Mater. Struct.
,
43
(
1
), pp.
51
62
.10.1111/ffe.13028
21.
Zhang
,
X. C.
,
Gong
,
J. G.
, and
Xuan
,
F. Z.
,
2021
, “
A Deep Learning Based Life Prediction Method for Components Under Creep, Fatigue and Creep-Fatigue Conditions
,”
Int. J. Fatigue
,
148
, p.
106236
.10.1016/j.ijfatigue.2021.106236
22.
Gu
,
H. H.
,
Wang
,
R. Z.
,
Zhu
,
S. P.
,
Wang
,
X. W.
,
Wang
,
D. M.
,
Zhang
,
G. D.
,
Fan
,
Z. C.
,
Zhang
,
X. C.
, and
Tu
,
S. T.
,
2022
, “
Machine Learning Assisted Probabilistic Creep-Fatigue Damage Assessment
,”
Int. J. Fatigue
,
156
, p.
106677
.10.1016/j.ijfatigue.2021.106677
23.
Zhang
,
X. C.
,
Gong
,
J. G.
, and
Xuan
,
F. Z.
,
2021
, “
A Physics-Informed Neural Network for Creep-Fatigue Life Prediction of Components at Elevated Temperatures
,”
Eng. Fract. Mech.
,
258
, p.
108130
.10.1016/j.engfracmech.2021.108130
24.
Lemaitre
,
J.
, and
Chaboche
,
J. L.
,
1994
,
Mechanics of Solid Materials
,
Cambridge University Press
, Paris, UK.
25.
Chaboche
,
J.
, and
Lesne
,
P. A.
,
1988
, “
A Non‐Linear Continuous Fatigue Damage Model
,”
Fatigue Fract. Eng. Mater. Struct.
,
11
(
1
), pp.
1
17
.10.1111/j.1460-2695.1988.tb01216.x
26.
Shang
,
Y.
,
Pei
,
Y. L.
,
Gong
,
S. K.
,
Ru
,
Y.
,
Yu
,
Y. C.
,
Zhou
,
R. H.
,
Li
,
S. S.
, and
Xu
,
H. B.
,
2021
, “
Directional Solidification Behavior of Turbine Blades in DZ125 Alloy: Design of Blade Numbers on Assembly
,”
Rare Met.
,
40
(
5
), pp.
1134
1144
.10.1007/s12598-019-01324-0
27.
Zhao
,
G.
,
Qi
,
H. Y.
,
Li
,
S. L.
,
Yang
,
X. G.
, and
Shi
,
D. Q.
,
2021
, “
Effects of Tensile Load Hold Time on the Fatigue and Corrosion-Fatigue Behavior of Turbine Blade Materials
,”
Int. J. Fatigue
,
152
, p.
106448
.10.1016/j.ijfatigue.2021.106448
28.
Shi
,
C. X.
,
Zhong
,
Z. Y.
, and
Feng
,
D.
,
2012
,
China Superalloys Handbook
,
China Zhijian Publishing House and Standard Press of China
,
Beijing, China
.
29.
Huo
,
J.
,
Sun
,
D.
,
Wu
,
H.
,
Wang
,
W.
, and
Xue
,
L.
,
2019
, “
Multi-Axis Low-Cycle Creep/Fatigue Life Prediction of High-Pressure Turbine Blades Based on a New Critical Plane Damage Parameter
,”
Eng. Failure Anal..
,
106
, p.
104159
.10.1016/j.engfailanal.2019.104159
30.
Sharma
,
D.
,
Pandey
,
V. B.
,
Singh
,
I. V.
,
Natarajan
,
S.
,
Kumar
,
J.
, and
Ahmad
,
S.
,
2021
, “
A Polygonal FEM and Continuum Damage Mechanics Based Framework for Stochastic Simulation of Fatigue Life Scatter in Duplex Microstructure Titanium Alloys
,”
Mech. Mater.
,
163
, p.
104071
.10.1016/j.mechmat.2021.104071
31.
Zhang
,
T. L.
,
Yuan
,
H.
, and
Yang
,
S.
,
2021
, “
Microstructural Characterization and Fatigue Performance of the Recast Material Induced by Laser Manufacturing of a Nickel-Based Superalloy
,”
J. Mater. Process Technol.
,
293
, p.
117087
.10.1016/j.jmatprotec.2021.117087
You do not currently have access to this content.