Abstract

Despite the pipeline network being the safest mode of oil and gas transportation systems, the pipeline failure rate has increased significantly over the last decade, particularly for aging pipelines. Predicting failure risk and prioritizing the riskiest asset from a large set of pipelines is one of the demanding tasks for the utilities. Machine learning (ML) application in pipeline failure risk prediction has recently shown promising results. However, due to safety and security concerns, obtaining sufficient operation and failure data to train ML models accurately is a significant challenge. This study employed a Generative Adversarial Network (GAN) based framework to generate synthetic pipeline data (DSyn) using a subset (70%) of experimental burst test results data (DExp) compiled from the literature to overcome the limitation of accessing operational data. The proposed framework was tested on (1) real data, and (2) combined real and generated synthetic data. The burst failure risk of corroded oil and gas pipelines was determined using probabilistic approaches, and pipelines were classified into two classes depending on their probability of failure: (1) low failure risk (Pf: 0–0.5) and (2) high failure risk (Pf: >0.5). Two random forest (RF) models (MExp and MComb) were trained using a subset of 70% of actual experimental pipeline data, (DExp) and a combination of 70% of actual experimental and 100% of synthetic data, respectively. These models were validated on the remaining subset (30%) of experimental test data. The validation results reveal that adding synthetic data can further improve the performance of the ML models. The area under the ROC Curve was found to be 0.96 and 0.99 for real model (MExp) and combined model (MComb) data, respectively. The combined model with improved performance can be used in strategic oil and gas pipeline resilience improvement planning, which sets long-term critical decisions regarding maintenance and potential replacement of pipes.

References

1.
Lin
,
P.
, and
Wang
,
N.
,
2016
, “
Building Portfolio Fragility Functions to Support Scalable Community Resilience Assessment
,”
Sustainable Resilient Infrastruct.
,
1
(
3–4
), pp.
108
122
.10.1080/23789689.2016.1254997
2.
Wang
,
X.
,
Mazumder
,
R. K.
,
Salarieh
,
B.
,
Salman
,
A. M.
,
Shafieezadeh
,
A.
, and
Li
,
Y.
,
2022
, “
Machine Learning for Risk and Resilience Assessment in Structural Engineering: Progress and Future Trends
,”
J. Struct. Eng.
,
148
(
8
), p.
03122003
.10.1061/(ASCE)ST.1943-541X.0003392
3.
Zakikhani
,
K.
,
Nasiri
,
F.
, and
Zayed
,
T.
,
2020
, “
A Review of Failure Prediction Models for Oil and Gas Pipelines
,”
J. Pipeline Syst. Eng. Pract.
,
11
(
1
), p.
03119001
.10.1061/(ASCE)PS.1949-1204.0000407
4.
Rachman
,
A.
,
Zhang
,
T.
, and
Ratnayake
,
R. C.
,
2021
, “
Applications of Machine Learning in Pipeline Integrity Management: A State-of-the-Art Review
,”
Int. J. Pressure Vessels Piping
,
193
, p.
104471
.10.1016/j.ijpvp.2021.104471
5.
DOT,
2020
, “
Distribution, Transmission & Gathering, LNG, and Liquid Accident and Incident Data
,”
U.S. Department of Transportation, Pipeline and Hazardous Materials Safety Administration
,
Washington, DC
.https://www.phmsa.dot.gov/data-and-statistics/pipeline/distribution-transmission-gathering-lng-and-liquid-accident-andincident-data
6.
ASCE
2021
, “
ASCE 2021 Infrastructure Report Card
,”
ASCE
,
Reston, VA
, accessed July 1, 2023, http://www.infrastructurereportcard.org/
7.
Teixeira
,
A. P.
,
Soares
,
C. G.
,
Netto
,
T. A.
, and
Estefen
,
S. F.
,
2008
, “
Reliability of Pipelines With Corrosion Defects
,”
Int. J. Pressure Vessels Piping
,
85
(
4
), pp.
228
237
.10.1016/j.ijpvp.2007.09.002
8.
Zhu
,
X. K.
,
2021
, “
A Comparative Study of Burst Failure Models for Assessing Remaining Strength of Corroded Pipelines
,”
J. Pipeline Sci. Eng.
,
1
(
1
), pp.
36
50
.10.1016/j.jpse.2021.01.008
9.
Ferraz
,
I. M. N.
,
Garcia
,
A. C.
, and
Bernardini
,
F. V. C.
,
2008
, “
Artificial Neural Networks Ensemble Used for Pipeline Leak Detection Systems
,”
International Pipeline Conference
, Vol.
48579
, Calgary, AB, Canada, Sept. 29–Oct. 3, pp.
739
747
.https://www.researchgate.net/publication/256698791_Artificial_neural_networks_ensemble_used_for_pipeline_leak_detection_systems
10.
Mazumder
,
R. K.
,
Salman
,
A. M.
,
Li
,
Y.
, and
Yu
,
X.
,
2018
, “
Performance Evaluation of Water Distribution Systems and Asset Management
,”
J. Infrastruct. Syst.
,
24
(
3
), p.
03118001
.10.1061/(ASCE)IS.1943-555X.0000426
11.
Bertolini
,
M.
, and
Bevilacqua
,
M.
,
2006
, “
Oil Pipeline Spill Cause Analysis: A Classification Tree Approach
,”
J. Qual. Maint. Eng.
,
12
(
2
), pp.
186
198
.10.1108/13552510610667192
12.
Zhou
,
Q.
,
Wu
,
W.
,
Liu
,
D.
,
Li
,
K.
, and
Qiao
,
Q.
,
2016
, “
Estimation of Corrosion Failure Likelihood of Oil and Gas Pipeline Based on Fuzzy Logic Approach
,”
Eng. Failure Anal.
,
70
, pp.
48
55
.10.1016/j.engfailanal.2016.07.014
13.
Xu
,
Q.
,
Zhang
,
L.
, and
Liang
,
W.
,
2013
, “
Acoustic Detection Technology for Gas Pipeline Leakage
,”
Process Safety Environ. Prot.
,
91
(
4
), pp.
253
261
.10.1016/j.psep.2012.05.012
14.
Ayala-Rivera
,
V.
,
Portillo-Dominguez
,
A. O.
,
Murphy
,
L.
, and
Thorpe
,
C.
,
2016
, “
COCOA: A Synthetic Data Generator for Testing Anonymization Techniques
,”
Privacy in Statistical Databases: UNESCO Chair in Data Privacy, International Conference, PSD 2016
, Dubrovnik, Croatia, Sept. 14–16, Proceedings,
Springer International Publishing
.10.1007/978-3-319-45381-1_13
15.
Metz
,
L.
,
Poole
,
B.
,
Pfau
,
D.
, and
Sohl-Dickstein
,
J.
,
2016
, “
Unrolled Generative Adversarial Networks
,”
International Conference on Learning Representations (ICLR)
2017, Vancouver, BC, Canada, Apr. 24–26.https://openreview.net/forum?id=BydrOIcle
16.
Creswell
,
A.
,
White
,
T.
,
Dumoulin
,
V.
,
Arulkumaran
,
K.
,
Sengupta
,
B.
, and
Bharath
,
A. A.
,
2018
, “
Generative Adversarial Networks: An Overview
,”
IEEE Signal Process. Mag.
,
35
(
1
), pp.
53
65
.10.1109/MSP.2017.2765202
17.
Berkson
,
E. E.
,
VanCor
,
J. D.
,
Esposito
,
S.
,
Chern
,
G.
, and
Pritt
,
M.
,
2019
, “
Synthetic Data Generation to Mitigate the Low/No-Shot Problem in Machine Learning
,” 2019 IEEE Applied Imagery Pattern Recognition Workshop (
AIPR
),
Washington, DC
, Oct. 15–17, pp.
1
7
.10.1109/AIPR47015.2019.9174596
18.
Shah
,
S.
,
Gandhi
,
D.
, and
Kothari
,
J.
,
2020
, “
Machine Learning Based Synthetic Data Generation Using Iterative Regression Analysis
,” 2020 4th International Conference on Electronics, Communication and Aerospace Technology (
ICECA
), Coimbatore, India, Nov. 5–7, pp.
1093
1100
.10.1109/ICECA49313.2020.9297491
19.
Dewi
,
C.
,
Chen
,
R. C.
,
Liu
,
Y. T.
, and
Tai
,
S. K.
,
2022
, “
Synthetic Data Generation Using DCGAN for Improved Traffic Sign Recognition
,”
Neural Comput. Appl.
,
34
(
24
), pp.
21465
21480
.10.1007/s00521-021-05982-z
20.
Gujar
,
S.
,
Shah
,
T.
,
Honawale
,
D.
,
Bhosale
,
V.
,
Khan
,
F.
,
Verma
,
D.
, and
Ranjan
,
R.
,
2022
, “
GenEthos: A Synthetic Data Generation System With Bias Detection and Mitigation
,”
International Conference on Computing, Communication, Security and Intelligent Systems (IC3SIS)
,
Kochi, India
, June 23–25, pp.
1
6
.10.1109/IC3SIS54991.2022.9885653
21.
Dziubiński
,
M.
,
Frątczak
,
M.
, and
Markowski
,
A. S.
,
2006
, “
Aspects of Risk Analysis Associated With Major Failures of Fuel Pipelines
,”
J. Loss Prev. Process Ind.
,
19
(
5
), pp.
399
408
.10.1016/j.jlp.2005.10.007
22.
Yuhua
,
D.
, and
Datao
,
Y.
,
2005
, “
Estimation of Failure Probability of Oil and Gas Transmission Pipelines by Fuzzy Fault Tree Analysis
,”
J. Loss Prev. Process Ind.
,
18
(
2
), pp.
83
88
.10.1016/j.jlp.2004.12.003
23.
Shahriar
,
A.
,
Sadiq
,
R.
, and
Tesfamariam
,
S.
,
2012
, “
Risk Analysis for Oil & Gas Pipelines: A Sustainability Assessment Approach Using Fuzzy Based Bow-Tie Analysis
,”
J. Loss Prev. Process Ind.
,
25
(
3
), pp.
505
523
.10.1016/j.jlp.2011.12.007
24.
Jamshidi
,
A.
,
Yazdani-Chamzini
,
A.
,
Yakhchali
,
S. H.
, and
Khaleghi
,
S.
,
2013
, “
Developing a New Fuzzy Inference System for Pipeline Risk Assessment
,”
J. Loss Prev. Process Ind.
,
26
(
1
), pp.
197
208
.10.1016/j.jlp.2012.10.010
25.
Lu
,
L.
,
Liang
,
W.
,
Zhang
,
L.
,
Zhang
,
H.
,
Lu
,
Z.
, and
Shan
,
J.
,
2015
, “
A Comprehensive Risk Evaluation Method for Natural Gas Pipelines by Combining a Risk Matrix With a Bow-Tie Model
,”
J. Natural Gas Sci. Eng.
,
25
, pp.
124
133
.10.1016/j.jngse.2015.04.029
26.
Guo
,
Y.
,
Meng
,
X.
,
Wang
,
D.
,
Meng
,
T.
,
Liu
,
S.
, and
He
,
R.
,
2016
, “
Comprehensive Risk Evaluation of Long-Distance Oil and Gas Transportation Pipelines Using a Fuzzy Petri Net Model
,”
J. Natural Gas Sci. Eng.
,
33
, pp.
18
29
.10.1016/j.jngse.2016.04.052
27.
Kiefner
,
J. F.
, and
Vieth
,
P. H.
,
1990
, “
Evaluating Pipe–1. New Method Corrects Criterion for Evaluating Corroded Pipe
,”
Oil Gas J.
,
88
(
32
), pp.
56
59
.https://www.ogj.com/pipelines-transportation/pipelines/article/17214348/evaluating-pipe1-new-method-corrects-criterionfor-evaluating-corroded-pipe
28.
Netto
,
T. A.
,
Ferraz
,
U. S.
, and
Estefen
,
S. F.
,
2005
, “
The Effect of Corrosion Defects on the Burst Pressure of Pipelines
,”
J. Constr. Steel Res.
,
61
(
8
), pp.
1185
1204
.10.1016/j.jcsr.2005.02.010
29.
Wang
,
N.
, and
Zarghamee
,
M. S.
,
2014
, “
Evaluating Fitness-for-Service of Corroded Metal Pipelines: Structural Reliability Bases
,”
J. Pipeline Syst. Eng. Pract.
,
5
(
1
), p.
04013012
.10.1061/(ASCE)PS.1949-1204.0000148
30.
Oliveira
,
N.
,
Bisaggio
,
H.
, and
Netto
,
T.
,
2016
, “
Probabilistic Analysis of the Collapse Pressure of Corroded Pipelines
,”
ASME
Paper No. OMAE2016-54299.10.1115/OMAE2016-54299
31.
Ossai
,
C. I.
,
Boswell
,
B.
, and
Davies
,
I. J.
,
2015
, “
Estimation of Internal Pit Depth Growth and Reliability of Aged Oil and Gas Pipelines—a Monte Carlo Simulation Approach
,”
Corrosion
,
71
(
8
), pp.
977
991
.10.5006/1543
32.
Dundulis
,
G.
,
Žutautaitė
,
I.
,
Janulionis
,
R.
,
Ušpuras
,
E.
,
Rimkevičius
,
S.
, and
Eid
,
M.
,
2016
, “
Integrated Failure Probability Estimation Based on Structural Integrity Analysis and Failure Data: Natural Gas Pipeline Case
,”
Reliab. Eng. Syst. Saf.
,
156
, pp.
195
202
.10.1016/j.ress.2016.08.003
33.
Det Norske Veritas,
1999
, “
Corroded Pipelines: DNV Recommended Practice RP-F101
,”
Det Norske Veritas
,
Høvik, Norway
.
34.
ASME B31G,
2009
, “
ASME B31G-2009: Manual for Determining the Remaining Strength of Corroded Pipelines
,”
ASME
,
New York
.
35.
Ritchie
,
D.
, and
Last
,
S.
,
1995
, “
Burst Criteria of Corroded Pipelines-Defect Acceptance Criteria
,”
Proceedings of the EPRG/PRC 10th Biennial Joint Technical Meeting Online Pipe Research
, Cambridge, UK, Apr. 18, pp.
1
11
.
36.
Cronin
,
D. S.
, and
Pick
,
R. J.
,
2000
, “
Experimental Database for Corroded Pipe: Evaluation of RSTRENG and B31G
,” ASME Paper No. IPC2000-190.10.1115/IPC2000-190
37.
Wang
,
W.
,
Smith
,
M. Q.
,
Popelar
,
C. H.
, and
Maple
,
J. A.
,
1998
, “
A New Rupture Prediction Model for Corroded Pipelines Under Combined Loadings
,”
ASME
Paper No. IPC1998-2064.10.1115/IPC1998-2064
38.
Mazumder
,
R. K.
,
Salman
,
A. M.
, and
Li
,
Y.
,
2021
, “
Failure Risk Analysis of Pipelines Using Data-Driven Machine Learning Algorithms
,”
Struct. Safety
,
89
, p.
102047
.10.1016/j.strusafe.2020.102047
39.
Ghosh
,
J.
,
Padgett
,
J. E.
, and
Dueñas-Osorio
,
L.
,
2013
, “
Surrogate Modeling and Failure Surface Visualization for Efficient Seismic Vulnerability Assessment of Highway Bridges
,”
Probab. Eng. Mech.
,
34
, pp.
189
199
.10.1016/j.probengmech.2013.09.003
40.
Jeon
,
J. S.
,
Shafieezadeh
,
A.
, and
DesRoches
,
R.
,
2014
, “
Statistical Models for Shear Strength of RC Beam‐Column Joints Using Machine‐Learning Techniques
,”
Earthquake Eng. Struct. Dyn.
,
43
(
14
), pp.
2075
2095
.10.1002/eqe.2437
41.
Mangalathu
,
S.
, and
Jeon
,
J.
,
S.
,
2019
, “
Machine Learning–Based Failure Mode Recognition of Circular Reinforced Concrete Bridge Columns: Comparative Study
,”
J. Struct. Eng.
,
145
(
10
), p.
04019104
.10.1061/(ASCE)ST.1943-541X.0002402
42.
Mangalathu
,
S.
,
Hwang
,
S. H.
, and
Jeon
,
J. S.
,
2020
, “
Failure Mode and Effects Analysis of RC Members Based on Machine-Learning-Based SHapley Additive exPlanations (SHAP) Approach
,”
Eng. Struct.
,
219
, p.
110927
.10.1016/j.engstruct.2020.110927
43.
Mazumder
,
R. K.
,
2020
, “
Risk-Based Asset Management Framework for Water Distribution Systems
,”
Doctoral dissertation
,
Case Western Reserve University
, Cleveland, OH.https://etd.ohiolink.edu/apexprod/rws_etd/send_file/send?accession=case1594169243438607&disposition=inline
44.
Brenninkmeijer
,
B.
,
de Vries
,
A.
,
Marchiori
,
E.
, and
Hille
,
Y.
,
2019
, “
On the Generation and Evaluation of Tabular Data Using GANs
,”
Doctoral dissertation
,
Radboud University
,
Nijmegen, The Netherlands
.https://www.researchgate.net/publication/344227988_On_the_Generation_and_Evaluation_of_Tabular_Data_using_GANs
45.
Xue
,
A.
,
2021
, “
End-to-End Chinese Landscape Painting Creation Using Generative Adversarial Networks
,”
Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision
,
Waikoloa, HI, Jan. 3–8, pp.
3863
3871
.https://openaccess.thecvf.com/content/WACV2021/papers/Xue_End-to-End_Chinese_Landscape_Painting_Creation_Using_Generative_Adversarial_Networks_WACV_2021_paper.pdf
46.
Goodfellow
,
I. J.
,
Shlens
,
J.
, and
Szegedy
,
C.
,
2014
, “
Explaining and Harnessing Adversarial Examples
,” International Conference on Learning Representations (
ICLR
) 2015, San Diego, CA, May 7–9.https://www.researchgate.net/publication/269935591_Explaining_and_Harnessing_Adversarial_Examples
47.
Xu
,
L.
, and
Veeramachaneni
,
K.
,
2018
, “
Synthesizing Tabular Data Using Generative Adversarial Networks
,” preprint
arXiv:1811.11264
.10.48550/arXiv.1811.11264
48.
Cosham
,
A.
, and
Hopkins
,
P.
,
2004
, “
The Effect of Dents in Pipelines—Guidance in the Pipeline Defect Assessment Manual
,”
Int. J. Pressure Vessels Piping
,
81
(
2
), pp.
127
139
.10.1016/j.ijpvp.2003.11.004
49.
Caleyo
,
F.
,
Gonzalez
,
J. L.
, and
Hallen
,
J. M.
,
2002
, “
A Study on the Reliability Assessment Methodology for Pipelines With Active Corrosion Defects
,”
Int. J. Pressure Vessels Piping
,
79
(
1
), pp.
77
86
.10.1016/S0308-0161(01)00124-7
50.
Mazumder
,
R. K.
,
Salman
,
A. M.
,
Li
,
Y.
, and
Yu
,
X.
,
2019
, “
Reliability Assessment of Corroded Water Distribution Networks
,”
Pipelines 2019: Condition Assessment, Construction, and Rehabilitation
,
American Society of Civil Engineers
,
Reston, VA
, pp.
343
353
.https://ascelibrary.org/doi/abs/10.1061/9780784482490.036
51.
Batte
,
A. D.
,
Fu
,
B.
,
Kirkwood
,
M. G.
, and
Vu
,
D.
,
1997
, “
New Methods for Determining the Remaining Strength of Corroded Pipelines
,” ASME paper No. IPC2002-27147.10.1115/IPC2002-27147
52.
Gao
,
J.
,
Yang
,
P.
,
Li
,
X.
,
Zhou
,
J.
, and
Liu
,
J.
,
2019
, “
Analytical Prediction of Failure Pressure for Pipeline With Long Corrosion Defect
,”
Ocean Eng.
,
191
, p.
106497
.10.1016/j.oceaneng.2019.106497
53.
Jin
,
W. L.
,
Zhang
,
E. Y.
,
Shao
,
J. W.
, and
Liu
,
D. H.
,
2004
, “
Cause Analysis and Countermeasure for Submarine Pipeline Failure
,”
Bull. Sci. Technol.
, 20, pp. 529–533.10.3390/jmse8050329
54.
Boxall
,
J. B.
,
O'Hagan
,
A.
,
Pooladsaz
,
S.
,
Saul
,
A. J.
, and
Unwin
,
D. M.
,
2007
, “
Estimation of Burst Rates in Water Distribution Mains
,”
Proc. Inst. Civil Eng.-Water Manage.
,
160
(
2
), pp.
73
82
.10.1680/wama.2007.160.2.73
55.
Amaya-Gómez
,
R.
,
Sánchez-Silva
,
M.
,
Bastidas-Arteaga
,
E.
,
Schoefs
,
F.
, and
Muñoz
,
F.
,
2019
, “
Reliability Assessments of Corroded Pipelines Based on Internal Pressure–a Review
,”
Eng. Failure Anal.
,
98
, pp.
190
214
.10.1016/j.engfailanal.2019.01.064
56.
Rajani
,
B.
, and
Kleiner
,
Y.
,
2001
, “
Comprehensive Review of Structural Deterioration of Water Mains: Physically Based Models
,”
Urban Water
,
3
(
3
), pp.
151
164
.10.1016/S1462-0758(01)00032-2
57.
Kleiner
,
Y.
, and
Rajani
,
B.
,
2001
, “
Comprehensive Review of Structural Deterioration of Water Mains: Statistical Models
,”
Urban Water
,
3
(
3
), pp.
131
150
.10.1016/S1462-0758(01)00033-4
58.
El-Abbasy
,
M. S.
,
Senouci
,
A.
,
Zayed
,
T.
,
Mirahadi
,
F.
, and
Parvizsedghy
,
L.
,
2014
, “
Artificial Neural Network Models for Predicting Condition of Offshore Oil and Gas Pipelines
,”
Autom. Construction
,
45
, pp.
50
65
.10.1016/j.autcon.2014.05.003
59.
Fan
,
X.
,
Wang
,
X.
,
Zhang
,
X.
, and
Yu
,
P. A. X. B.
,
2022
, “
Machine Learning Based Water Pipe Failure Prediction: The Effects of Engineering, Geology, Climate and Socio-Economic Factors
,”
Reliab. Eng. Syst. Safety
,
219
, p.
108185
.10.1016/j.ress.2021.108185
60.
Villarin
,
M. C.
, and
Rodriguez-Galiano
,
V. F.
,
2019
, “
Machine Learning for Modeling Water Demand
,”
J. Water Resour. Plann. Manage.
,
145
(
5
), p.
04019017
.10.1061/(ASCE)WR.1943-5452.0001067
61.
Wang
,
Z.
, and
Li
,
S.
,
2020
, “
Data-Driven Risk Assessment on Urban Pipeline Network Based on a Cluster Model
,”
Reliab. Eng. Syst. Saf.
,
196
, p.
106781
.10.1016/j.ress.2019.106781
62.
Ouadah
,
A.
,
2018
, “
Pipeline Defects Risk Assessment Using Machine Learning and Analytical Hierarchy Process
,”
2018 International Conference on Applied Smart Systems (ICASS)
, Medea, Algeria, Nov. 24–25, pp.
1
6
.10.1109/ICASS.2018.8651970
63.
Su
,
Y.
,
Li
,
J.
,
Yu
,
B.
,
Zhao
,
Y.
, and
Yao
,
J.
,
2021
, “
Fast and Accurate Prediction of Failure Pressure of Oil and Gas Defective Pipelines Using the Deep Learning Model
,”
Reliab. Eng. Syst. Safety
,
216
, p.
108016
.10.1016/j.ress.2021.108016
64.
Soomro
,
A. A.
,
Mokhtar
,
A. A.
,
Kurnia
,
J. C.
,
Lashari
,
N.
,
Lu
,
H.
, and
Sambo
,
C.
,
2022
, “
Integrity Assessment of Corroded Oil and Gas Pipelines Using Machine Learning: A Systematic Review
,”
Eng. Failure Anal.
,
131
, p.
105810
.10.1016/j.engfailanal.2021.105810
65.
De-León-Escobedo
,
D.
,
2023
, “
Risk-Based Maintenance Time for Oil and Gas Steel Pipelines Under Corrosion Including Uncertainty on the Corrosion Rate and Consequence-Based Target Reliability
,”
Int. J. Pressure Vessels Piping
,
203
, p.
104927
.10.1016/j.ijpvp.2023.104927
66.
Liu
,
W.
,
Liu
,
Z.
,
Liu
,
Z.
,
Xiong
,
S.
, and
Zhang
,
S.
,
2023
, “
Random Forest and Whale Optimization Algorithm to Predict the Invalidation Risk of Backfilling Pipeline
,”
Mathematics
,
11
(
7
), p.
1636
.10.3390/math11071636
67.
Klever
,
F. J.
, and
Stewart
,
G.
,
1995
, “
New Developments in Burst Strength Predictions for Locally Corroded Pipelines
,” ASME Paper No. IPC2002-27191.10.1115/IPC2002-27191
68.
Leis
,
B. N.
, and
Stephens
,
D. R.
,
1997
, “
An Alternative Approach to Assess the Integrity of Corroded Line Pipe-Part I: Current Status
,”
The Seventh International Offshore and Polar Engineering Conference
,
International Society of Offshore and Polar Engineers
, Honolulu, HI, May 25–30.https://onepetro.org/ISOPEIOPEC/proceedings-abstract/ISOPE97/All-ISOPE97/ISOPE-I-97-490/24221
69.
Canadian Standards Association,
1999
, “
CSA Z662-99, Oil and Gas Pipeline Systems
,” Toronto,
ON, Canada
.
70.
Breiman
,
L.
,
2001
, “
Random Forests
,”
Mach. Learning
,
45
(
1
), pp.
5
32
.10.1023/A:1010933404324
71.
Robles-Velasco
,
A.
,
Cortés
,
P.
,
Muñuzuri
,
J.
, and
Onieva
,
L.
,
2020
, “
Prediction of Pipe Failures in Water Supply Networks Using Logistic Regression and Support Vector Classification
,”
Reliab. Eng. Syst. Saf.
,
196
, p.
106754
.10.1016/j.ress.2019.106754
72.
Luque
,
A.
,
Carrasco
,
A.
,
Martín
,
A.
, and
de las Heras
,
A.
,
2019
, “
The Impact of Class Imbalance in Classification Performance Metrics Based on the Binary Confusion Matrix
,”
Pattern Recognit.
,
91
, pp.
216
231
.10.1016/j.patcog.2019.02.023
You do not currently have access to this content.