Today most commercial parabolic trough collector (PTC) solar power plants make use of the well-known LS3/Eurotrough optics. The PTC has a concentration ratio relative to the maximum thermodynamic limit equal to 0.31. In order to improve the competiveness of PTC technology, two well differentiated R&D strategies have been undertaken: (i) developing larger parabolic troughs, which places a higher demand in tracking accuracy and lower tolerances with respect to wind loads, quality of mirrors, control and assembly imprecisions, and (ii) developing secondary concentrators with the aim of bringing the concentration ratio relative to the maximum one as close to 1 as possible. In this paper, a parametric trough collector (PmTC) for a flat receiver designed with the simultaneous multiple surface (SMS) method is proposed. The method assumes zero transmission, absorption, and reflection optical losses and allows for both reflective primary and secondary surfaces (XX-reflective plus reflective) to be simultaneously designed, guaranteeing Etendue matching. The proposed PmTC geometry increases the referred ratio up to 0.59 with a rim angle greater than 100 deg and with the same effective acceptance angle as the PTC. The flat absorber can be replaced with a multitube receiver for application in direct steam generation (DSG).

References

1.
Estela
,
2012
, “
Solar Thermal Electricity–Strategic Research Agenda 2020–2025
,” European Solar Thermal. Electricity Association.
2.
Price
,
H.
,
Lüpfert
,
E.
,
Kearney
,
D.
,
Zarza
,
E.
,
Cohen
,
G.
,
Gee
,
R.
, and
Mahoney
,
R.
,
2002
, “
Advances in Parabolic Trough Solar Power Technology
,”
ASME J. Sol. Energy Eng.
,
124
(
2
), pp.
109
125
.
3.
Giannuzzi
,
G. M.
,
Majorana
,
C. E.
,
Miliozzi
,
A.
,
Salomoni
,
V. A.
, and
Nicolini
,
D.
,
2007
, “
Structural Design Criteria for Steel Components of Parabolic-Trough Solar Concentrators
,”
ASME J. Sol. Energy Eng.
,
129
(
4
), pp.
382
390
.
4.
Winston
,
R.
,
Benitez
,
P.
, and
Miñano
,
J. C.
,
2005
,
Non Imaging Optics
,
Elsevier, Academic Press
,
Oxford, UK
.
5.
Fernández-García
,
A.
,
Zarza
,
E.
,
Valenzuela
,
L.
, and
Pérez
,
M.
,
2010
, “
Parabolic-Trough Solar Collectors and Their Applications
,”
Renewable Sustainable Energy Rev.
,
14
(
7
), pp.
1695
1721
.
6.
Lüpfert
,
E.
,
Geyer
,
M.
,
Schiel
,
W.
,
Esteban
,
A.
,
Osuna
,
R.
,
Zarza
,
E.
, and
Nava
,
P.
,
2001
, “
Eurotrough Design Issues and Prototype Testing at PSA
,”
Solar Forum 2001 Solar Energy: The Power to Choose
, Apr. 21–25, Washington, DC.
7.
Welford
,
W. T.
, and
Winston
,
R.
,
1989
,
High Collection Nonimaging Optics
,
Academic
,
New York
.
8.
Rabl
,
A.
,
1985
,
Active Solar Collectors and Their Applications
,
Oxford University Press
,
Oxford, UK
.
9.
Benitez
,
P.
,
García
,
R.
, and
Miñano
,
J. C.
,
1997
, “
Contactless Efficient Two-Stage Solar Concentrator for Tubular Absorber
,”
Appl. Opt.
,
36
(
28
), pp.
7119
7124
.
10.
Benítez
,
P.
,
Miñano
,
J. C.
,
Zamora
,
P.
,
Mohedano
,
R.
,
Cvetkovic
,
A.
,
Buljan
,
M.
,
Chaves
,
J.
, and
Hernández
,
M.
,
2010
, “
High Performance Fresnel-Based Photovoltaic Concentrator
,”
Opt. Express
,
18
(
S1
), pp.
A25
A40
.
11.
Flagsol, 2015, “Heliotrough Main Dimensions,” Flagsol GmbH, Köln, Germany, accessed Nov. 25, 2015, http://www.heliotrough.com
12.
Flageg
, 2015, “Ultimate Trough,” Flabeg FE GmbH, Furth im Wald, Bavaria, accessed Nov. 25, 2015, http://www.flabeg-fe.com/en/engineering/ultimate-trough.html
13.
Marcotte
,
P.
, and
Manning
,
K.
,
2014
, “
Development of an Advanced Large-Aperture Parabolic Trough Collector
,”
Energy Procedia
,
49
, pp.
145
154
.
14.
Chaves
,
J.
,
2008
,
Introduction to Non Imaging Optics
,
CRC Press
,
Boca Raton, FL
.
15.
Pereira
,
M. C.
,
Gordon
,
J. M.
,
Rabl
,
A.
, and
Winston
,
R.
,
1991
, “
High Concentration Two Stage Optics for Parabolic Trough Solar Collectors With Tubular Absorber and Large Rim Angle
,”
Sol. Energy
,
47
(
6
), pp.
457
466
.
16.
Rabl
,
A.
,
1977
, “
Radiation Transfer Trough Specular Passages—A Simple Approximation
,”
Int. J. Heat Mass Transfer
,
20
(
4
), pp.
323
330
.
17.
Ries
,
H.
, and
Spirkl
,
W.
,
1996
, “
Nonimaging Secondary Concentrators for Large Rim Angle Parabolic Troughs With Tubular Absorbers
,”
Appl. Opt.
,
35
(
13
), pp.
2242
2245
.
18.
Davies
,
P. A.
,
1994
, “
The Edge Ray Principle of Nonimaging Optics
,”
J. Opt. Soc. Am. A
,
11
(
4
), pp.
1256
1259
.
19.
Cannavaro
,
D.
,
Chaves
,
J.
, and
Collares
,
M.
,
2013
, “
New Second-Stage Concentrators (XX SMS) for Parabolic Primaries; Comparison With Conventional Parabolic Trough Concentrators
,”
Sol. Energy
,
92
, pp.
98
105
.
20.
Minano
,
J. C.
, and
Gonzalez
,
J. C.
,
1992
, “
New Method of Design of Nonimaging Concentrators
,”
Appl. Opt.
,
31
(
16
), pp.
3051
3060
.
21.
Martinez-Val
,
J.
,
Abánades
,
A.
,
Abbas
,
R.
,
Muñoz
,
J.
,
Valdés
,
M.
,
Ramos
,
A.
,
Rovira
,
A.
, and
Montes
,
M. J.
,
2011
, “
Thermal Performance Analysis of Linear Receivers
,”
SolarPACES 2011 International Conference
, Granada, Spain, Sept. 20–23, pp.
489
498
.
You do not currently have access to this content.