The design and construction of solar concentrators heavily affects their optical efficiency, heat utilization, and cost. Current trough concentrators use an equivalent uniform beam with a metal grid substructure. In this conventional design, there is surplus stiffness and strength, which unnecessarily increases the overall weight and cost of the structure. This paper describes a variable cross section structural optimization approach (with the EuroTrough design, including safety factors, taken as an example) to overcome this issue. The main improvement of this design comes from keeping the beams rigid and strong near the two ends (at the torque box structure) while allowing the middle of the structure to be relatively weak. Reducing the cross-sectional area of the middle beams not only reduces the amount of material needed for the structure but also reduces the deflection of the reflector. In addition, a new connection structure between two neighboring concentrator elements was designed to reinforce the structure. The simulated results show that the concentrator's structural weight (including the torque box, endplates, and cantilever arms) is reduced by 13.5% (i.e., about 133 kg per 12 m long element). This represents a meaningful capital and installation cost savings while at the same time improving the optical efficiency.

References

1.
Price
,
H.
,
Lu¨pfert
,
E.
,
Kearney
,
D.
, Zarza, E., Cohen, G., Gee, R., and Mahoney, R.,
2002
, “
Advances in Parabolic Trough Solar Power Technology
,”
ASME J. Sol. Energy Eng.
,
124
(
2
), pp.
109
125
.
2.
Tao
,
T.
,
Zheng
,
H.
, and
He
,
K.
,
2011
, “
A New Trough Solar Concentrator and Its Performance Analysis
,”
Sol. Energy
,
85
(
1
), pp.
198
207
.
3.
Boerema
,
N.
,
Morrison
,
G.
,
Taylor
,
R.
, and Rosengarten, G.,
2012
, “
Liquid Sodium Versus Hitec as a Heat Transfer Fluid in Solar Thermal Central Receiver Systems
,”
Sol. Energy
,
86
(
9
), pp.
2293
2305
.
4.
Boerema
,
N.
,
Morrison
,
G.
,
Taylor
,
R.
, and Rosengarten, G.,
2013
, “
High Temperature Solar Thermal Central-Receiver Billboard Design
,”
Sol. Energy
,
97
(
97
), pp.
356
368
.
5.
Cohen
,
G. E.
,
Kearney
,
D. W.
, and
Kolb
,
G. J.
,
1999
, “
Final Report on the Operation and Maintenance Improvement Program for Concentrating Solar Power Plants
,” Sandia National Laboratory, Albuquerque, NM, Sandia Technical Report No.
SAND-99-1290
.
6.
Riffelmann
,
K.
,
Kötter
,
J.
,
Nava
,
P.
,
Meuser
,
F.
,
Weinrebe
,
G.
,
Schiel
,
W.
,
Kuhlmann
,
G.
,
Wohlfahrt
,
A.
,
Nady
,
A.
, and
Dracker
,
R.
,
2009
, “
Heliotrough—A New Collector Generation for Parabolic Trough Power Plants
,”
15th International SolarPACES Symposium
, Berlin, Sept. 15–18, pp. 1–8.https://www.researchgate.net/publication/282859628_HELIOTROUGH_-_A_NEW_COLLECTOR_GENERATION_FOR_PARABOLIC_TROUGH_POWER_PLANTS
7.
Wu
,
Z.
,
Lei
,
D.
,
Yuan
,
G.
,
Shao
,
J.
,
Zhang
,
Y.
, and
Wang
,
Z.
,
2014
, “
Structural Reliability Analysis of Parabolic Trough Receivers
,”
Appl. Energy
,
123
(
3
), pp.
232
241
.
8.
Castañeda
,
N.
,
Vázquez
,
J.
,
Domingo
,
M.
,
Fernández
,
A.
, and
León
,
J.
,
2006
, “
Sener Parabolic Trough Collector Design and Testing
,”
13th International SolarPACES Symposium
, Seville, Spain, June 20–23.
9.
Zhang
,
L.
,
Wang
,
W.
,
Yu
,
Z.
,
Fan
,
L.
,
Hu
,
Y.
,
Ni
,
Y.
,
Fan
,
J.
, and
Cen
,
K.
,
2012
, “
An Experimental Investigation of a Natural Circulation Heat Pipe System Applied to a Parabolic Trough Solar Collector Steam Generation System
,”
Sol. Energy
,
86
(
3
), pp.
911
919
.
10.
Lotker
,
M.
,
1991
, “
Barriers to Commercialization of Large-Scale Solar Electricity: Lessions Learned From the LUZ Experience
,” Sandia National Laboratory, Albuquerque, NM, Sandia Technical Report No.
SAND-91-7014
.https://grist.files.wordpress.com/2007/08/sand91_7014.pdf
11.
Lüpfert
,
E.
,
Geyer
,
M.
,
Schiel
,
W.
,
Esteban
,
A.
,
Osuna
,
R.
,
Zarza
,
E.
, and
Nava
,
P.
,
2001
, “
EuroTrough Design Issues and Prototype Testing at PSA
,”
Solar Forum (Solar Energy: The Power to Choose)
, Washington, DC, Apr. 21–25, pp. 1–5.https://pdfs.semanticscholar.org/1953/4a46155f706d9d48207cb2ab8efb61914b66.pdf
12.
CSP Today
,
2015
, “
Global Projects Tracker
,” CSP Today, London, accessed Sept. 9, 2017, http://social.csptoday.com/tracker/projects
13.
Fernández-García
,
A.
,
Zarza
,
E.
,
Valenzuela
,
L.
, and Perez, M.,
2010
, “
Parabolic-Trough Solar Collectors and Their Applications
,”
Renewable Sustainable Energy Rev.
,
14
(
7
), pp.
1695
1721
.
14.
Farr
,
A.
, and
Gee
,
R.
,
2009
, “
The SkyTrough™ Parabolic Trough Solar Collector
,”
ASME
Paper No. ES2009-90090.
15.
Cheng
,
Z. D.
,
He
,
Y. L.
,
Cui
,
F. Q.
,
Du
,
B.
,
Zheng
,
Z.
, and
Xu
,
Y.
,
2014
, “
Comparative and Sensitive Analysis for Parabolic Trough Solar Collectors With a Detailed Monte Carlo Ray-Tracing Optical Model
,”
Appl. Energy.
,
115
(
Suppl C
), pp.
559
572
.
16.
Williamson
,
K.
,
2012
, “
3M and Gossamer Space Frames Unveil Large Parabolic Trough
,” Huson European Media, Cambridge, UK, accessed Sept. 27, 2017, http://www.renewableenergyfocus.com/view/25589/3m-and-gossamer-space-frames-unveil-large-parabolic-trough/
17.
FLABEG Solar, 2017, “
Large Trough Dimensions, Huge Cost Savings: Ultimate Trough Solar Collectors for Concentrated Solar Power (CSP)
,” CSPplaza, Beijing, China, accessed Sept. 27, 2017, http://www.cspplaza.com/data/download/FLABEG_Solar_Ultimate_Trough_29.pdf
18.
Marcotte
,
P.
, and
Manning
,
K.
,
2014
, “
Development of an Advanced Large-Aperture Parabolic Trough Collector
,”
Energy Procedia
,
49
, pp.
145
154
.
19.
Instalaciones Inabensa SA,
2004
, “
Development of a Low Cost European Parabolic Trough Collector
,” The European Commission, Sevilla, Spain, accessed Sept. 9, 2017, https://cordis.europa.eu/result/rcn/26927_en.html
20.
The Royal Netherlands Meteorological Institute, 2017, “
Wind Speed and Wind Pressure
,” KNMI, Utrechtseweg, The Netherlands, Sept. 27, 2017, http://www.knmi.nl/samenw/hydra/faq/press.html
21.
Standardization Administration of the People's Republic of China, 2008, “
Hot Rolled Section Steel
,” Standardization Administration of the People's Republic of China, Beijing, China, No. GB/T 706-2008.
22.
Standardization Administration of the People's Republic of China, 2006, “
Carbon Structural Steels
,” Standardization Administration of the People's Republic of China, Beijing, China, No. GB/T 700-2006.
23.
Standardization Administration of the People's Republic of China, 2008, “
High Strength Low Alloy Structural Steels
,” Standardization Administration of the People's Republic of China, Beijing, China, No. GB/T 1591-2008.
24.
Metro Glass Tech Ltd., 2017, “
Performance Data–Glass Catalogue & Reference Guide
,” Metro Glass Tech Ltd., Auckland, NZ, accessed Sept. 27, 2017, http://www.metroglasstech.co.nz/catalogue/122.aspx
25.
GSC Glass Ltd., 2017, “
Toughened Glass Vs Heat Strengthened Vs Annealed Glass
,” GSC Glass Ltd., New Delhi, India, accessed Sept. 27, 2017, http://www.gscglass.com/tempered-glass/
26.
Hyspan, 2017, “
Solar Panel Connections
,” Hyspan Precision Products Inc., Chula Vista, CA, accessed Sept. 27, 2017, http://www.hyspan.com/SolarPanelConnect.html
27.
Rizk
,
A. S. S.
,
2010
, “
Structural Design of Reinforced Concrete Tall Buildings
,”
CTBUH J.
, (1), pp.
34
41
.http://global.ctbuh.org/resources/papers/download/401-structural-design-of-reinforced-concrete-tall-buildings.pdf
28.
Sukhatme
,
S. P.
, and
Nayak
,
J. K.
,
2008
,
Solar Energy: Principles of Thermal Collection and Storage
, 3rd ed.,
McGraw-Hill
,
New Delhi, India
.
29.
Inabensa, Solucar; Iberdrola; Flabeg Solar International
,
1999
, “
Extension, Test and Qualification of EuroTrough From 4 to 6 Segments at Plataforma Solar de Almería
,” European Community, Brussels, Belgium, Technical Report No. ERK6-CT1999-00018.
You do not currently have access to this content.