Abstract

Over the last few decades, the vertical-axis wind turbines (VAWTs) have undergone intensive research mainly due to their design simplicity and independency of wind direction. The drag-based Savonius wind rotor exhibits a better starting capability, whereas the lift-based Darrieus wind rotor achieves higher efficiency over a wider operating range. Thus, in order to capitalize on their advantages, both the rotors are mounted on the same axis to form a hybrid/combined system. In this review paper, an attempt has been made to collect and analyze the past research studies in the field of hybrid wind rotors. An optimization route has also been suggested for the design of such a hybrid wind rotor to ensure that the design complexity is minimized, and at the same time, both the Savonius and the Darrieus rotors are utilized to their fullest potential. In this regard, a few important parameters are identified whose effects on the hybrid rotor performance must be investigated in future studies. Suggestions and direction of research are presented keeping in mind the improvement of the technology.

References

1.
Spencer
,
D.
,
2019
, “
BP Statistical Review of World Energy Statistical Review of World
,”
The Editor BP Statistical Review World Energy
, pp.
1
69
.
2.
GWEC
,
2019
, “
Global Wind Energy Council Report 2018
,”
Wind Glob. Counc. Energy
, (
April
), pp.
1
61
.
3.
Ackermann
,
T.
, and
So
,
L.
,
2000
, “
Wind Energy Technology and Current Status : a Review
,”
Renewable Sustainable Energy Rev.
,
4
(
4
), pp.
315
374
. 10.1016/S1364-0321(00)00004-6
4.
Tummala
,
A.
,
Kishore
,
R.
,
Kumar
,
D.
,
Indraja
,
V.
, and
Krishna
,
V. H.
,
2016
, “
A Review on Small Scale Wind Turbines
,”
Renewable Sustainable Energy Rev.
,
56
, pp.
1351
1371
. 10.1016/j.rser.2015.12.027
5.
Kumar
,
R.
,
Raahemifar
,
K.
, and
Fung
,
A. S.
,
2018
, “
A Critical Review of Vertical Axis Wind Turbines for Urban Applications
,”
Renewable Sustainable Energy Rev.
,
89
, pp.
281
291
. 10.1016/j.rser.2018.03.033
6.
Rehman
,
S.
,
Mahbub Alam
,
M.
,
Alhems
,
L. M.
, and
Mujahid Rafique
,
M.
,
2018
, “
Horizontal Axis Wind Turbine Blade Design Methodologies for Efficiency Enhancement—A Review
,”
Energies
,
11
(
3
), p.
506
. 10.3390/en11030506
7.
Eriksson
,
S.
,
Bernhoff
,
H.
, and
Leijon
,
M.
,
2008
, “
Evaluation of Different Turbine Concepts for Wind Power
,”
Renewable Sustainable Energy Rev.
,
12
(
5
), pp.
1419
1434
. 10.1016/j.rser.2006.05.017
8.
Amano
,
R. S.
,
2017
, “
Review of Wind Turbine Research in 21st Century
,”
ASME J. Energy Res. Technol
,,
139
(
5
), p.
050801
. 10.1115/1.4037757
9.
Chaichana
,
T.
, and
Chaitep
,
S.
,
2010
, “
Wind Power Potential and Characteristic Analysis of Chiang Mai, Thailand
,”
J. Mech. Sci. Technol.
,
24
(
7
), pp.
1475
1479
. 10.1007/s12206-010-0415-3
10.
Ishugah
,
T. F.
,
Li
,
Y.
,
Wang
,
R. Z.
, and
Kiplagat
,
J. K.
,
2014
, “
Advances in Wind Energy Resource Exploitation in Urban Environment : A Review
,”
Renewable Sustainable Energy Rev.
,
37
, pp.
613
626
. 10.1016/j.rser.2014.05.053
11.
Tjiu
,
W.
,
Marnoto
,
T.
,
Mat
,
S.
,
Ruslan
,
M. H.
, and
Sopian
,
K.
,
2015
, “
Darrieus Vertical Axis Wind Turbine for Power Generation I: Assessment of Darrieus VAWT Configurations
,”
Renewable Energy
,
75
(
March
), pp.
50
67
. 10.1016/j.renene.2014.09.038
12.
Alom
,
N.
, and
Saha
,
U. K.
,
2018
, “
Four Decades of Research Into the Augmentation Techniques of Savonius Wind Turbine Rotor
,”
ASME J. Sol. Energy Eng.
,
140
(
5
), p.
050801
. https://doi.org/10.1115/1.4038785
13.
Jain
,
S.
, and
Saha
,
U. K.
,
2020
, “
The State-of-the-Art Technology of H-Type Darrieus Wind Turbine Rotors
,”
ASME J. Energy Resour. Technol.
,
142
(
3
), p.
030801
. 10.1115/1.4044559
14.
Alom
,
N.
, and
Saha
,
U. K.
,
2019
, “
Evolution and Progress in the Development of Savonius Wind Turbine Rotor Blade Profiles and Shapes
,”
ASME J. Sol. Energy Eng.
,
141
(
3
), p.
030801
. https://doi.org/10.1115/1.4041848
15.
Wong
,
K. H.
,
Chong
,
W. T.
,
Sukiman
,
N. L.
,
Poh
,
S. C.
,
Shiah
,
Y.-C.
, and
Wang
,
C.-T.
,
2017
, “
Performance Enhancements on Vertical Axis Wind Turbines Using Flow Augmentation Systems: A Review
,”
Renewable Sustainable Energy Rev.
,
73
, pp.
904
921
. 10.1016/j.rser.2017.01.160
16.
Bhutta
,
M. M. A.
,
Hayat
,
N.
,
Farooq
,
A. U.
,
Ali
,
Z.
,
Jamil
,
S. R.
, and
Hussain
,
Z.
,
2012
, “
Vertical Axis Wind Turbine—A Review of Various Configurations and Design Techniques
,”
Renewable Sustainable Energy Rev.
,
16
(
4
), pp.
1926
1939
. 10.1016/j.rser.2011.12.004
17.
Darrieus
,
G. J. M.
Turbine Having Its Rotating Shaft Traverse to the Flow of the Current
,”
U.S. Patent No.1,835,018
,
1931
.
18.
Islam
,
M.
,
Ting
,
D. S.
, and
Fartaj
,
A.
,
2008
, “
Aerodynamic Models for Darrieus-Type Straight-Bladed Vertical Axis Wind Turbines
,”
Renewable Sustainable Energy Rev.
,
12
(
4
), pp.
1087
1109
. 10.1016/j.rser.2006.10.023
19.
Fujisawa
,
N.
, and
Shibuya
,
S.
,
2001
, “
Observations of Dynamic Stall on Darrieus Wind Turbine Blades
,”
J. Wind Eng. Ind. Aerodyn.
,
89
(
2
), pp.
201
214
. 10.1016/S0167-6105(00)00062-3
20.
Ferreira
,
C. S.
,
van Bussel
,
G.
,
Scarano
,
F.
, and
van Kuik
,
G.
,
2007
, “
2D PIV Visualization of Dynamic Stall on a Vertical Axis Wind Turbine
,”
45th AIAA Aerospace Science Meeting. Exhibition
,
Reno, NV
,
Jan. 8–11
.
21.
Xu
,
H.-Y.
,
Qiao
,
C.-L.
, and
Ye
,
Z.-Y.
,
2016
, “
Dynamic Stall Control on the Wind Turbine Airfoil via a Co-flow Jet
,”
Energies
,
9
(
6
), p.
429
. 10.3390/en9060429
22.
Nakafuji
,
D. T. Y.
,
van Dam
,
C. P.
,
Smith
,
R. L.
, and
Collins
,
S. D.
,
2001
, “
Active Load Control for Airfoils Using Microtabs
,”
ASME J. Sol. Energy Eng.
,
123
(
4
), pp.
282
289
. 10.1115/1.1410110
23.
Gerontakos
,
P.
, and
Lee
,
T.
,
2006
, “
Dynamic Stall Flow Control via a Trailing-Edge Flap
,”
AIAA J.
,
44
(
3
), pp.
469
480
. 10.2514/1.17263
24.
Baker
,
J. R.
,
1983
, “
Features to Aid or Enable Self Starting of Fixed Pitch Low Solidity Vertical Axis Wind Turbines
,”
J. Wind Eng. Ind. Aerodyn.
,
15
(
1–3
), pp.
369
380
. 10.1016/0167-6105(83)90206-4
25.
Kirke
,
B. K.
,
1998
,
Evaluation of Self-starting Vertical Axis Wind Turbines for Stand-Alone Applications
,
Griffith University
,
Gold Coast
.
26.
Chen
,
C. C.
, and
Kuo
,
C. H.
,
2013
, “
Effects of Pitch Angle and Blade Camber on Flow Characteristics and Performance of Small-Size Darrieus VAWT
,”
J. Vis.
,
16
(
1
), pp.
65
74
. 10.1007/s12650-012-0146-x
27.
Singh
,
M. A.
,
Biswas
,
A.
, and
Misra
,
R. D.
,
2015
, “
Investigation of Self-starting and High Rotor Solidity on the Performance of a Three S1210 Blade H-Type Darrieus Rotor
,”
Renewable Energy
,
76
, pp.
381
387
. 10.1016/j.renene.2014.11.027
28.
Bianchini
,
A.
,
Ferrari
,
L.
, and
Magnani
,
S.
,
2016
, “
Start-up Behavior of a Three-Bladed H-Darrieus VAWT: Experimental and Numerical Analysis
,”
Paper No. GT2011-4588, ASME Turbo Expo 2011
,
Vancouver, British Columbia
,
June 6–10
.
29.
Dominy
,
R. G.
,
Lunt
,
P.
,
Bickerdyke
,
A.
, and
Dominy
,
J.
,
2007
, “
Self-starting Capability of a Darrieus Turbine
,”
Proc. Inst. Mech. Eng., Part A
,
221
(
1
), pp.
111
120
. 10.1243/09576509JPE340
30.
Worasinchai
,
S.
,
Ingram
,
G. L.
, and
Dominy
,
R. G.
,
2015
, “
The Physics of H-Darrieus Turbine Starting Behavior
,”
ASME J. Eng. Gas Turbines Power
,
138
(
6
), p.
062605
. https://doi.org/10.1115/1.4031870
31.
Hill
,
N.
,
Dominy
,
R.
,
Ingram
,
G.
, and
Dominy
,
J.
,
2009
, “
Darrieus Turbines: The Physics of Self-starting
,”
Proc. Inst. Mech. Eng., Part A
,
223
(
1
), pp.
21
29
. 10.1243/09576509JPE615
32.
Amet
,
E.
,
MAitre
,
T.
,
Pellone
,
C.
, and
Achard
,
J.-L.
,
2009
, “
2D Numerical Simulations of Blade-Vortex Interaction in a Darrieus Turbine
,”
ASME J. Fluids Eng.
,
131
(
11
), p.
111103
. 10.1115/1.4000258
33.
Ghasemian
,
M.
,
Ashrafi
,
Z. N.
, and
Sedaghat
,
A.
,
2017
, “
A Review on Computational Fluid Dynamic Simulation Techniques for Darrieus Vertical Axis Wind Turbines
,”
Energy Convers. Manag.
,
149
, pp.
87
100
. 10.1016/j.enconman.2017.07.016
34.
Modi
,
V. J.
, and
Fernando
,
M. S. U. K.
,
1989
, “
On the Performance of the Savonius Wind Turbine
,”
ASME J. Sol. Energy Eng.
,
111
(
1
), pp.
71
81
. 10.1115/1.3268289
35.
Roy
,
S.
, and
Saha
,
U. K.
,
2015
, “
Wind Tunnel Experiments of a Newly Developed Two-Bladed Savonius-Style Wind Turbine
,”
Appl. Energy
,
137
, pp.
117
125
. 10.1016/j.apenergy.2014.10.022
36.
Kacprzak
,
K.
,
Liskiewicz
,
G.
, and
Sobczak
,
K.
,
2013
, “
Numerical Investigation of Conventional and Modified Savonius Wind Turbines
,”
Renewable Energy
,
60
, pp.
578
585
. 10.1016/j.renene.2013.06.009
37.
Fujisawa
,
N.
, and
Gotoh
,
F.
,
1992
, “
Visualization Study of the Flow in and Around a Savonius Rotor
,”
Exp. Fluids
,
12
(
6
), pp.
407
412
. 10.1007/BF00193888
38.
Kamoji
,
M. A.
,
Kedare
,
S. B.
, and
Prabhu
,
S. V.
,
2009
, “
Experimental Investigations on Single Stage Modified Savonius Rotor
,”
Appl. Energy
,
86
(
7–8
), pp.
1064
1073
. 10.1016/j.apenergy.2008.09.019
39.
Roy
,
S.
, and
Saha
,
U. K.
,
2013
, “
Review on the Numerical Investigations Into the Design and Development of Savonius Wind Rotors
,”
Renewable Sustainable Energy Rev.
,
24
, pp.
73
83
. 10.1016/j.rser.2013.03.060
40.
Saha
,
U. K.
,
Thotla
,
S.
, and
Maity
,
D.
,
2008
, “
Optimum Design Configuration of Savonius Rotor Through Wind Tunnel Experiments
,”
J. Wind Eng. Ind. Aerodyn.
,
96
(
8–9
), pp.
1359
1375
. 10.1016/j.jweia.2008.03.005
41.
Tian
,
W.
,
Mao
,
Z.
,
Zhang
,
B.
, and
Li
,
Y.
,
2018
, “
Shape Optimization of a Savonius Wind Rotor With Different Convex and Concave Sides
,”
Renewable Energy
,
117
(
October
), pp.
287
299
. 10.1016/j.renene.2017.10.067
42.
Dhamotharan
,
V.
,
Jadhav
,
P. D.
,
Ramu
,
P.
, and
Prakash
,
A. K.
,
2018
, “
Optimal Design of Savonius Wind Turbines Using Ensemble of Surrogates and CFD Analysis
,”
Struct. Multidiscip. Optim.
,
58
(
6
), pp.
2711
2726
. 10.1007/s00158-018-2052-x
43.
Roy
,
S.
,
Das
,
R.
, and
Saha
,
U. K.
,
2018
, “
An Inverse Method for Optimization of Geometric Parameters of a Savonius-Style Wind Turbine
,”
Energy Convers. Manag.
,
155
, pp.
116
127
. 10.1016/j.enconman.2017.10.088
44.
Agrawal
,
A.
,
Kansagara
,
D. D.
,
Sharma
,
D.
, and
Saha
,
U. K.
,
2019
, “
Savonius Wind Turbine Blade Profile Optimization by Coupling CFD Simulations With Simplex Search Technique
,”
Paper No. GTIndia2019-2442, ASME Gas Turbine India Conference
,
Chennai, India
,
Dec. 5–6
.
45.
Alom
,
N.
,
Das
,
R.
, and
Saha
,
U. K.
,
2019
, “
Optimization of Aerodynamic Parameters of an Elliptical-Bladed Savonius Wind Rotor Using Multi-objective Genetic Algorithm
,”
Paper No. GTIndia2019-2352, ASME Gas Turbine India Conference
,
Chennai, India
,
Dec. 5–6
.
46.
Bach
,
G.
,
1931
, “
Untersuchungen über Savonius-Rotoren und Verwandte Strömungsmaschinen
,”
Forsch. Geb. Ingenieurwes.
,
2
(
6
), pp.
218
231
https://doi.org/10.1007/bf02579117.
47.
Grinspan
,
A. S.
,
Saha
,
U. K.
, and
Mahanta
,
P.
,
2004
, “
Experimental Investigation of Twisted Bladed Savonius Wind Turbine Rotor
,”
Int. Energy J.
,
5
(
1
), pp.
1
9
.
48.
Sahim
,
K.
,
Santoso
,
D.
, and
Radentan
,
A.
,
2013
, “
Performance of Combined Water Turbine With Semielliptic Section of the Savonius Rotor
,”
Int. J. Rotating Mach.
,
2013
, pp.
1
5
. 10.1155/2013/985943
49.
Alexander
,
A. J.
, and
Holownia
,
B. P.
,
1978
, “
Wind Tunnel Tests on a Savonius Rotor
,”
J. Wind Eng. Ind. Aerodyn.
,
3
(
4
), pp.
343
351
. 10.1016/0167-6105(78)90037-5
50.
Ogawa
,
T.
,
Yoshida
,
H.
, and
Yokota
,
Y.
,
1989
, “
Development of Rotational Speed Control Systems for a Savonius-Type Wind Turbine
,”
ASME J. Fluids Eng.
,
111
(
1
), pp.
53
58
. 10.1115/1.3243598
51.
Irabu
,
K.
, and
Roy
,
J. N.
,
2007
, “
Characteristics of Wind Power on Savonius Rotor Using a Guide-box Tunnel
,”
Exp. Therm. Fluid Sci.
,
32
(
2
), pp.
580
586
. 10.1016/j.expthermflusci.2007.06.008
52.
Altan
,
B. D.
, and
Atılgan
,
M.
,
2010
, “
The use of a Curtain Design to Increase the Performance Level of a Savonius Wind Rotors
,”
Renewable. Energy
,
35
(
4
), pp.
821
829
. 10.1016/j.renene.2009.08.025
53.
Alom
,
N.
, and
Saha
,
U. K.
,
2019
, “
Drag and Lift Characteristics of a Novel Elliptical-Bladed Savonius Rotor With Vent Augmenters
,”
ASME J. Sol. Energy Eng.
,
141
(
5
), p.
051007
. https://doi.org/10.1115/1.4043516
54.
Zhao
,
G. J.
,
Chen
,
F.
,
Song
,
Y. P.
, and
Wang
,
Z. Q.
,
2004
, “
Experimental Study on the Aerodynamic Performance of Swept-Curved Blade
,”
Chin. J. Aeronaut.
,
17
(
3
), pp.
136
141
. 10.1016/S1000-9361(11)60227-6
55.
Zhou
,
T.
, and
Rempfer
,
D.
,
2013
, “
Numerical Study of Detailed Flow Field and Performance of Savonius Wind Turbines
,”
Renewable Energy
,
51
, pp.
373
381
. 10.1016/j.renene.2012.09.046
56.
Roy
,
S.
, and
Saha
,
U. K.
,
2013
, “
Computational Study to Assess the Influence of Overlap Ratio on Static Torque Characteristics of a Vertical Axis Wind Turbine
,”
Procedia Eng.
,
51
(
NUiCONE 2012
), pp.
694
702
. 10.1016/j.proeng.2013.01.099
57.
Emmanuel
,
B.
, and
Jun
,
W.
,
2011
, “
Numerical Study of a Six-Bladed Savonius Wind Turbine
,”
ASME J. Sol. Energy Eng.
,
133
(
4
). 10.1115/1.4004549
58.
Liu
,
K.
,
Yu
,
M.
, and
Zhu
,
W.
,
2019
, “
Enhancing Wind Energy Harvesting Performance of Vertical Axis Wind Turbines With a New Hybrid Design : A Fluid-Structure Interaction Study
,”
Renewable Energy
,
140
, pp.
912
927
. 10.1016/j.renene.2019.03.120
59.
Gupta
,
R.
,
Biswas
,
A.
, and
Sharma
,
K. K.
,
2008
, “
Comparative Study of a Three-Bucket Savonius Rotor With a Combined Three-Bucket Savonius-Three-Bladed Darrieus Rotor
,”
Renewable Energy
,
33
(
9
), pp.
1974
1981
. 10.1016/j.renene.2007.12.008
60.
Kumar
,
P. M.
,
Surya
,
M. R.
,
Sivalingam
,
K.
,
Lim
,
T. C.
,
Ramakrishna
,
S.
, and
Wei
,
H.
,
2019
, “
Computational Optimization of Adaptive Hybrid Darrieus Turbine: Part 1
,”
Fluids
,
4
(
2
), p.
90
https://doi.org/10.3390/fluids4020090.
61.
Chen
,
J.
,
Jan
,
K.
,
Zhang
,
L.
,
Lu
,
L.
, and
Yang
,
H.
,
2012
, “
Influence of Phase-Shift and Overlap Ratio on Savonius Wind Turbine’s Performance
,”
ASME J. Sol. Energy Eng.
,
134
(
1
), p.
011016
. 10.1115/1.4004980
62.
Ghosh
,
A.
,
Biswas
,
A.
,
Sharma
,
K. K.
, and
Gupta
,
R.
,
2015
, “
Computational Analysis of Flow Physics of a Combined Three Bladed Darrieus Savonius Wind Rotor
,”
J. Energy Inst.
,
88
(
4
), pp.
425
437
. 10.1016/j.joei.2014.11.001
63.
Bhuyan
,
S.
, and
Biswas
,
A.
,
2014
, “
Investigations on Self-starting and Performance Characteristics of Simple H and Hybrid H-Savonius Vertical Axis Wind Rotors
,”
Energy Convers. Manag.
,
87
, pp.
859
867
. 10.1016/j.enconman.2014.07.056
64.
Gupta
,
R.
, and
Biswas
,
A.
,
2011
, “
CFD Analysis of Flow Physics and Aerodynamic Performance of a Combined Three-Bucket Savonius and Three-Bladed Darrieus Turbine
,”
Int. J. Green Energy
,
8
(
2
), pp.
209
233
. 10.1080/15435075.2010.548541
65.
Zemamou
,
M.
,
Aggour
,
M.
, and
Toumi
,
A.
,
2017
, “
Review of Savonius Wind Turbine Design and Performance
,”
Energy Procedia
,
141
(
August 2018
), pp.
383
388
. 10.1016/j.egypro.2017.11.047
66.
Rezaeiha
,
A.
,
Montazeri
,
H.
, and
Blocken
,
B.
,
2018
, “
Towards Optimal Aerodynamic Design of Vertical Axis Wind Turbines: Impact of Solidity and Number of Blades
,”
Energy
,
165
, pp.
1129
1148
. 10.1016/j.energy.2018.09.192
67.
Lam
,
H. F.
,
Liu
,
Y. M.
,
Peng
,
H. Y.
,
Lee
,
C. F.
, and
Liu
,
H. J.
,
2018
, “
Assessment of Solidity Effect on the Power Performance of H-Rotor Vertical Axis Wind Turbines in Turbulent Flows
,”
J. Renewable Sustainable Energy
,
10
(
2
), p.
023304
https://doi.org/10.1063/1.5023120.
68.
Mohamed
,
M. H.
,
2013
, “
Impacts of Solidity and Hybrid System in Small Wind Turbines Performance
,”
Energy
,
57
, pp.
495
504
. 10.1016/j.energy.2013.06.004
69.
Liang
,
X.
,
Fu
,
S.
,
Ou
,
B.
,
Wu
,
C.
,
Chao
,
C. Y. H.
, and
Pi
,
K.
,
2017
, “
A Computational Study of the Effects of the Radius Ratio and Attachment Angle on the Performance of a Darrieus-Savonius Combined Wind Turbine
,”
Renewable Energy
,
113
, pp.
329
334
. 10.1016/j.renene.2017.04.071
70.
Mao
,
Z.
, and
Tian
,
W.
,
2015
, “
Effect of the Blade Arc Angle on the Performance of a Savonius Wind Turbine
,”
Adv. Mech. Eng.
,
7
(
5
), pp.
1
10
.
71.
Yang
,
Y.
,
Guo
,
Z.
,
Song
,
Q.
,
Zhang
,
Y.
, and
Li
,
Q.
,
2018
, “
Effect of Blade Pitch Angle on the Aerodynamic Characteristics of a Straight-Bladed Vertical Axis Wind Turbine Based on Experiments and Simulations
,”
Energies
,
11
(
6
), p.
1514
https://doi.org/10.3390/en11061514.
72.
Alejandro Franco
,
J.
,
Carlos Jauregui
,
J.
,
Carbajal
,
A.
, and
Toledano-Ayala
,
M.
,
2017
, “
Shape Morphing Mechanism for Improving Wind Turbines Performance
,”
ASME J. Energy Resour. Technol.
,
139
(
5
), p.
051214
. https://doi.org/10.1115/1.4036724
73.
Hosseini
,
A.
, and
Goudarzi
,
N.
,
2019
, “
Design and CFD Study of a Hybrid Vertical-Axis Wind Turbine by Employing a Combined Bach-Type and H-Darrieus Rotor Systems
,”
Energy Convers. Manag.
,
189
(
March
), pp.
49
59
. 10.1016/j.enconman.2019.03.068
74.
Gavaldà
,
J.
,
Massons
,
J.
, and
Díaz
,
F.
,
1990
, “
Experimental Study on a Self-adapting Darrieus-Savonius Wind Machine
,”
Sol. Wind Technol.
,
7
(
4
), pp.
457
461
. 10.1016/0741-983X(90)90030-6
75.
Ahmedov
,
A.
,
2018
,
Investigation of the Performance of a Hybrid Wind Turbine Darrieus-Savonius
,
Loughborough University, Leicestershire, England
.
76.
Feng
,
F.
,
Li
,
Y.
,
Bai
,
Y.
,
Tong
,
G.
, and
Dong
,
X.
,
2019
, “
A Study on Aerodynamic Characteristics and Visualization of Flow Field of Lift-Drag Combined Starter
,”
Adv. Mech. Eng.
,
11
(
4
), pp.
1
16
. https://doi.org/10.1177/1687814019846233
77.
Chawla
,
S.
,
Chauhan
,
A.
, and
Bala
,
S.
,
2016
, “
Parametric Study of Hybrid Savonius-Darrieus Turbine
,”
Proceedings of 2015 2nd International Conference on Recent Advances in Engineering and Computer Science, RAECS 2015
,
Chandigarh, India
,
Dec. 21–22
, pp.
1
5
.
78.
Sheldahl
,
R. E.
,
Blackwell
,
B. F.
, and
Feltz
,
L. V.
,
2012
, “
Wind Tunnel Performance Data for Two- and Three-Bucket Savonius Rotors
,”
J. Energy
,
2
(
3
), pp.
160
164
. 10.2514/3.47966
79.
Sahim
,
K.
,
Santoso
,
D.
, and
Puspitasari
,
D.
,
2018
, “
Investigations on the Effect of Radius Rotor in Combined Darrieus-Savonius Wind Turbine
,”
Int. J. Rotating Mach.
,
2018
, pp.
1
7
. 10.1155/2018/3568542
80.
Hosseini
,
A.
, and
Goudarzi
,
N.
,
2018
, “
CFD and Control Analysis of a Smart Hybrid Vertical Axis Wind Turbine
,”
Paper No. POWER2018-7488, ASME 2018 Power Conference
,
Lake Buena Vista, FL
,
June 24–28
.
81.
Anderson
,
B. E.
Enclosed Vertical Axis Fluid Rotor
,”
US Patent No. US20110142641 A1
,
2010
.
82.
Wakui
,
T.
,
Tanzawa
,
Y.
,
Hashizume
,
T.
, and
Nagao
,
T.
,
2005
, “
Hybrid Configuration of Darrieus and Savonius Rotors for Stand-Alone Wind Turbine-Generator Systems
,”
Electr. Eng. Jpn
,
150
(
4
), pp.
13
22
. https://doi.org/10.1002/eej.20071
83.
Roshan
,
A.
,
Sagharichi
,
A.
, and
Maghrebi
,
M. J.
,
2020
, “
Nondimensional Parameters’ Effects on Hybrid Darrieus–Savonius Wind Turbine Performance
,”
ASME J. Energy Resour. Technol.
,
142
(
1
), p.
011002
. 10.1115/1.4044517
84.
Sun
,
X.
,
Chen
,
Y.
,
Cao
,
Y.
,
Wu
,
G.
,
Zheng
,
Z.
, and
Huang
,
D.
,
2016
, “
Research on the Aerodynamic Characteristics of a Lift Drag Hybrid Vertical Axis Wind Turbine
,”
Adv. Mech. Eng.
,
8
(
1
), pp.
1
11
.
85.
Ghosh
,
A.
Hybrid Vertical Axis Wind Turbine
,”
U.S. Patent No. US20160138568A1
,
2013
.
86.
Cortesi
,
E.
,
Scozzoli
,
S.
, and
Agatensi
,
P.
Hybrid Type Vertical Shaft Turbine for Wind Power Generating Devices
,”
E.P. Patent No. EP2459872A1
,
2012
.
87.
Xinguang
,
L.
2011
, “
Combined Vertical Axis Wind Turbine
,”
C.N. Patent No. CN202040012U
.
88.
Hashizume
,
T.
,
Murakami
,
M.
, and
Yamada
,
M.
Wind Turbine for Darrieus-Savonius Wind Power Generation Device
,”
J.P. Patent No JP2007040276A
,
2007
.
89.
Pallotta
,
A.
,
Pietrogiacomi
,
D.
, and
Romano
,
G. P.
,
2020
, “
HYBRI—A Combined Savonius-Darrieus Wind Turbine: Performances and Flow Fields
,”
Energy
,
191
, pp.
1
15
. 10.1016/j.energy.2019.116433
90.
Debnath
,
B. K.
,
Biswas
,
A.
, and
Gupta
,
R.
,
2009
, “
Computational Fluid Dynamics Analysis of a Combined Three-Bucket Savonius and Three- Bladed Darrieus Rotor at Various Overlap Conditions
,”
AIP J. Renewable and Sustainable Energy
,
1
(
3
), p.
033110
. 10.1063/1.3152431
91.
Kou
,
W.
,
Shi
,
X.
,
Yuan
,
B.
, and
Fan
,
L.
,
2011
, “
Modeling Analysis and Experimental Research on a Combined-Type Vertical Axis Wind Turbine
,”
Proceedings of International Conference on Electronics and Communication Control. ICECC 2011—
Ningbo, China
,
Sept. 9–11
, pp.
1537
1541
.
92.
Abid
,
M.
,
2015
, “
Design, Development and Testing of a Combined Savonius and Darrieus Vertical Axis Wind Turbine
,”
Iran. J. Energy Environ.
,
6
(
1
), pp.
1
4
https://doi.org/10.5829/idosi.ijee.2015.06.01.02.
93.
Sharma
,
K. K.
,
Biswas
,
A.
, and
Gupta
,
R.
,
2013
, “
Performance Measurement of a Three-Bladed Combined Darrieus-Savonius Rotor
,”
Int. J. Renewable Energy Res.
,
3
(
4
), pp.
885
891
. https://doi.org/10.1016/j.renene.2007.12.008
94.
Jacob
,
J.
, and
Chatterjee
,
D.
,
2019
, “
Design Methodology of Hybrid Turbine Towards Better Extraction of Wind Energy
,”
Renewable Energy
,
131
, pp.
625
643
. 10.1016/j.renene.2018.07.064
95.
Rassoulinejad-Mousavi
,
S. M.
,
Jamil
,
M.
, and
Layeghi
,
M.
,
2013
, “
Experimental Study of a Combined Three Bucket H-Rotor With Savonius Wind Turbine
,”
World Appl. Sci. J.
,
28
(
2
), pp.
205
211
.
96.
Siddiqui
,
A. S.
,
Alam
,
M.
,
Saleem
,
M.
,
Memon
,
A. H.
,
Shahzad
,
M.
, and
Jamil
,
M. S.
,
2018
, “
Turbine at Different Arrangements
,”
Proceedings of IEEE 21st International Multi-Topic Conference (INMIC)
,
Karachi, Pakistan
,
Nov. 1–2
, pp.
1
8
.
97.
Alom
,
N.
,
Kolaparthi
,
S. C.
,
Gadde
,
S. C.
, and
Saha
,
U. K.
,
2016
, “
Aerodynamic Design Optimization of Elliptical-Bladed Savonius-Style Wind Turbine by Numerical Simulations
,”
Paper No. OMAE2016-55095, ASME 35th International Conference on Ocean, Offshore and Arctic Engineering
,
Busan, South Korea
,
June 19–24
, Vol.
6
, pp.
1
7
.
98.
Alom
,
N.
,
Kumar
,
N.
, and
Saha
,
U. K.
,
2017
, “
Aerodynamic Performance of an Elliptical-Bladed Savonius Rotor Under the Influence of Number of Blades and Shaft
,”
Paper No. GTIndia2017-4554, ASME 2017 Gas Turbine India Conference
,
Bangalore, India
,
Dec. 7–8
, pp.
1
11
.
99.
Fujisawa
,
N.
,
1992
, “
On the Torque Mechanism of Savonius Rotors
,”
J. Wind Eng. Ind. Aerodyn.
,
40
(
3
), pp.
277
292
. 10.1016/0167-6105(92)90380-S
100.
Alom
,
N.
, and
Saha
,
U. K.
,
2017
, “
Arriving at the Optimum Overlap Ratio for an Elliptical-Bladed
,”
Paper No. GT2017-64137, ASME Turbo Expo 2017: Turbomachinery Technical Conf. and Exposition
,
Charlotte, NC
,
June 26–30
, pp.
1
10
.
You do not currently have access to this content.