Abstract
The study of solar radiation in space has become something necessary, motivating the launch of radiometers on board satellites dedicated to perform total solar irradiance (TSI) measurements and to build a record of their behavior over the years, thus making these data essential for meteorology and climatology. In this study, we propose a simplified model to understand the thermal behavior of absolute radiometers, which are used in this type of measurement. The model considers the heat transfer among parts through conduction and loss only by radiation since the instrument operates in a space environment. The goal is to understand how each component interferes with sensitivity and response time of the instrument depending on its design, material, volume, and thermal contact. The model was applied to data generated by a prototype for validation.