Abstract

Inspired by the polyp leaf of the Orange sea pen (Ptilosarcus gurneyi), a novel blade shape of the Savonius vertical-axis wind rotor is developed. The similarities between the aerodynamic and the hydrodynamic aspects of the Savonius rotor blade profile and the sea pen leaf are reviewed, and an appropriate analogy is thereby established. The shape of the sea pen leaf is then extracted to fabricate the rotor blades. The performance of this sea pen bladed rotor is evaluated in a low-speed subsonic wind tunnel at different wind velocities. The two-dimensional (2D) numerical analysis is also performed to support the experimental findings and to study the influence of blade shape on the pressure and the torque distributions of the rotor. The novel sea pen bladed rotor, having lesser material requirements, is seen to demonstrate a higher performance than that of the conventional semicircular bladed rotor in the tested range of low tip–speed ratio.

References

1.
Sarma
,
J.
,
Jain
,
S.
,
Mukherjee
,
P.
, and
Saha
,
U. K.
,
2021
, “
Hybrid/Combined Darrieus-Savonius Wind Turbines: Erstwhile Development and Future Prognosis
,”
ASME J. Sol. Energy Eng.
,
143
(
5
), p.
050801
.
2.
Fujisawa
,
N.
, and
Gotoh
,
F.
,
1994
, “
Experimental Study on the Aerodynamic Performance of a Savonius Rotor
,”
ASME J. Sol. Energy Eng.
,
116
(
3
), pp.
148
152
.
3.
Fujisawa
,
N.
,
1992
, “
On the Torque Mechanism of Savonius Rotors
,”
J. Wind Eng. Ind. Aerodyn.
,
40
(
3
), pp.
277
292
.
4.
Roy
,
S.
, and
Saha
,
U. K.
,
2013
, “
Review of Experimental Investigations Into the Design, Performance and Optimization of the Savonius Rotor
,”
Proc. Inst. Mech. Eng. Part A J. Power Energy
,
227
(
4
), pp.
528
542
.
5.
Alom
,
N.
, and
Saha
,
U. K.
,
2018
, “
Four Decades of Research Into the Augmentation Techniques of Savonius Wind Turbine Rotor
,”
ASME J. Sol. Energy Eng.
,
140
(
5
), p.
050801
.
6.
Alom
,
N.
, and
Saha
,
U. K.
,
2019
, “
Evolution and Progress in the Development of Savonius Wind Turbine Rotor Blade Profiles and Shapes
,”
ASME J. Sol. Energy Eng.
,
141
(
3
), p.
030801
.
7.
Chen
,
L.
,
Chen
,
J.
, and
Zhang
,
Z.
,
2018
, “
Review of the Savonius Rotor’s Blade Profile and Its Performance
,”
J. Renewable Sustainable Energy
,
10
(
1
), p.
013306
.
8.
Talukdar
,
P. K.
,
Alom
,
N.
,
Rathod
,
U. H.
, and
Kulkarni
,
V.
,
2022
, “
Alternative Blade Profile Based on Savonius Concept for Effective Wind Energy Harvesting
,”
ASME J. Energy Resour. Technol.
,
144
(
4
), p.
041304
.
9.
Roy
,
S.
, and
Saha
,
U. K.
,
2015
, “
Wind Tunnel Experiments of a Newly Developed Two-Bladed Savonius-Style Wind Turbine
,”
Appl. Energy
,
137
, pp.
117
125
.
10.
Chan
,
C. M.
,
Bai
,
H. L.
, and
He
,
D. Q.
,
2018
, “
Blade Shape Optimization of the Savonius Wind Turbine Using a Genetic Algorithm
,”
Appl. Energy
,
213
, pp.
148
157
.
11.
Ramadan
,
A.
,
Yousef
,
K.
,
Said
,
M.
, and
Mohamed
,
M. H.
,
2018
, “
Shape Optimization and Experimental Validation of a Drag Vertical Axis Wind Turbine
,”
Energy
,
151
, pp.
839
853
.
12.
Tian
,
W.
,
Song
,
B.
,
Van Zwieten
,
J. H.
, and
Pyakurel
,
P.
,
2015
, “
Computational Fluid Dynamics Prediction of a Modified Savonius Wind Turbine With Novel Blade Shapes
,”
Energies
,
8
(
8
), pp.
7915
7929
.
13.
Tartuferi
,
M.
,
D’Alessandro
,
V.
,
Montelpare
,
S.
, and
Ricci
,
R.
,
2015
, “
Enhancement of Savonius Wind Rotor Aerodynamic Performance: A Computational Study of New Blade Shapes and Curtain Systems
,”
Energy
,
79
, pp.
371
384
.
14.
Ma
,
C.
,
Song
,
L.
, and
Zhang
,
M. Z.
,
2017
, “
Performance Study for a Novel Vertical Axis Wind Turbine Based on Simulation Analysis
,”
Proceedings of the 14th International Conference on Networking, Sensing and Control, ICNSC 2017
,
Calabria, Italy
,
May 16–18
, IEEE, pp.
549
554
.
15.
Arfaoui
,
B.
,
Bouzaher
,
M. T.
,
Guerira
,
B.
, and
Bensaci
,
C. E.
,
2021
, “
On the Performance of Swing Arm Flapping Turbines
,”
ASME J. Sol. Energy Eng.
,
143
(
1
), p.
011013
.
16.
Anderson
,
J. M.
,
Streitlien
,
K.
,
Barrett
,
D. S.
, and
Triantafyllou
,
M. S.
,
1998
, “
Oscillating Foils of High Propulsive Efficiency
,”
J. Fluid Mech.
,
360
, pp.
41
72
.
17.
Lugt
,
H. J.
,
1983
,
Vortex Flow in Nature and Technology
,
John Wiley & Sons, Inc
,
New York
.
18.
Vogel
,
S.
,
1994
,
The Life in Moving Fluid—The Physical Biology of Flow
,
Princeton University Press
,
Princeton, NJ
.
19.
Fujisawa
,
N.
, and
Gotoh
,
F.
,
1992
, “
Visualization Study of the Flow in and Around a Savonius Rotor
,”
Exp. Fluids
,
12
(
6
), pp.
407
412
.
20.
Modi
,
V.
, and
Fernando
,
M.
,
1989
, “
On the Performance of the Savonius Wind Turbine
,”
ASME J. Sol. Energy Eng.
,
111
(
1
), pp.
71
81
.
21.
Dobrev
,
I.
, and
Massouh
,
F.
,
2011
, “
CFD and PIV Investigation of Unsteady Flow Through Savonius Wind Turbine
,”
Energy Procedia
,
6
, pp.
711
720
.
22.
Rathod
,
U. H.
,
Talukdar
,
P. K.
,
Kulkarni
,
V.
, and
Saha
,
U. K.
,
2019
, “
Effect of Capped Vents on Torque Distribution of a Semicircular-Bladed Savonius Wind Rotor
,”
ASME J. Energy Resour. Technol.
,
141
(
10
), p.
101201
.
23.
Roy
,
S.
, and
Ducoin
,
A.
,
2016
, “
Unsteady Analysis on the Instantaneous Forces and Moment Arms Acting on a Novel Savonius-Style Wind Turbine
,”
Energy Convers. Manage.
,
121
, pp.
281
296
.
24.
Iversen
,
J. D.
,
1979
, “
Autorotating Flat-Plate Wings: The Effect of the Moment of Inertia, Geometry and Reynolds Number
,”
J. Fluid Mech.
,
92
(
2
), pp.
327
348
.
25.
Lugt
,
H. J.
,
1983
, “
Autorotation
,”
Annu. Rev. Fluid Mech.
,
15
(
1
), pp.
123
147
.
26.
Smith
,
E. H.
,
1971
, “
Autorotating Wings: An Experimental Investigation
,”
J. Fluid Mech.
,
50
(
3
), pp.
513
534
.
27.
Fernandes
,
A. C.
, and
Rostami
,
A. B.
,
2015
, “
Hydrokinetic Energy Harvesting by an Innovative Vertical Axis Current Turbine
,”
Renewable Energy
,
81
, pp.
694
706
.
28.
Riabouchinsky
,
D. P.
,
1935
, “
Thirty Years of Theoretical and Experimental Research in Fluid Mechanics
,”
J. R. Aeronaut. Soc.
,
39
(
292
), pp.
282
348
.
29.
Lugt
,
H. J.
,
1980
, “
Autorotation of an Elliptic Cylinder About an Axis Perpendicular to the Flow
,”
J. Fluid Mech.
,
99
(
4
), pp.
817
840
.
30.
Lugt
,
H. J.
, and
Ohring
,
S.
,
1977
, “
Rotating Elliptic Cylinders in a Viscous Fluid at Rest or in a Parallel Stream
,”
J. Fluid Mech.
,
79
(
1
), pp.
127
156
.
31.
Kumar
,
J. S. Y.
,
2018
, “Octacorals,”
Chapter 6 in Faunal Diversity of Biogeographic Zones : Islands of India
,
C.
Kailash
, and
C.
Raghunathan
, eds.,
Zoological Survey of India
,
Kolkata, India
, pp.
73
80
.
32.
Riisgård
,
H. U.
, and
Larsen
,
P. S.
,
2010
, “Particle Capture Mechanisms in Suspension-Feeding Invertebrates,”
Mar. Ecol. Prog. Ser.
,
418
, pp.
255
293
.
33.
Rubenstein
,
D.
, and
Koehl
,
M. A. R.
,
1977
, “
The Mechanisms of Filter Feeding : Some Theoretical Considerations
,”
Am. Nat.
,
111
(
981
), pp.
981
994
.
34.
Shimeta
,
J.
, and
Jumars
,
P. A.
,
1991
, “
Physical Mechanisms and Rates of Particle Capture by Suspension-Feeders
,”
Oceanogr. Mar. Biol. An Annu. Rev.
,
29
, pp.
191
257
.
35.
Best
,
B. A.
,
1988
, “
Passive Suspension Feeding in a Sea Pen : Effects of Ambient Flow on Volume Flow Rate and Filtering Efficiency
,”
Biol. Bull.
,
175
(
3
), pp.
332
342
.
36.
Koehl
,
M. A. R.
,
1977
, “
Water Flow and the Morphology of Zoanthid Colonies
,”
Third International Coral Reef Symposium
,
Rosensteil School of Marine and Atmospheric Science, Miami, FL,
,
May
, pp.
437
444
. https://ib.berkeley.edu/labs/koehl/pdfs/Zoanthid_Colonies_1977.pdf
37.
Leversee
,
G. J.
,
1976
, “
Flow and Feeding in Fan-Shaped Colonies of the Gorgonian Coral, Leptogorgia
,”
Biol. Bull.
,
151
(
2
), pp.
344
356
.
38.
Wainwright
,
S. A.
, and
Dillon
,
J. R.
,
1969
, “
On the Orientation of Sea Fans
,”
Biol. Bull.
,
136
(
1
), pp.
130
139
.
39.
Warner
,
G. F.
,
1977
, “On the Shape of Passive Suspension Feeders,”
Biology of Benthic Organisms, 11th European Symposium on Marine Biology
,
B. F.
Keegan
,
P. O.
Ceidigh
, and
P. J.S
Boaden
, eds.,
Pergamon Press Ltd
,
Galway, Republic of Ireland
, pp.
567
576
.
40.
Crossley
,
M. J.
,
2021
, “
Great Sea-Pen (Sarcoptilus Grandis) (CC-BY-NC-SA)
,” GBIF—the Glob. Biodivers. Inf. Facil.
41.
Strazzari
,
T.
,
2021
, “
Great Sea-Pen (Sarcoptilus Grandis Gray) (CC-BY-NC)
,” GBIF—the Glob. Biodivers. Inf. Facil.
42.
McDaniel
,
N.
,
2006
, “
Orange Sea-Pen (Ptilosarcus Gurneyi) (CC-BY-NC)
,” GBIF—the Glob. Biodivers. Inf. Facil.
43.
Williams
,
G. C.
,
2011
, “
The Global Diversity of Sea Pens (Cnidaria: Octocorallia: Pennatulacea)
,”
PLoS One
,
6
(
7
), p.
e22747
.
44.
Horner
,
S. F.
,
1965
, “Pressure Drag,”
Chapter 3 in Fluid-Dynamic Drag: Practical Information on Aerodynamic Drag and Hydrodynamic Resistance
,
Horner Fluid Dynamics
,
Bakersfield, CA
, pp.
1
28
.
45.
Sun
,
J.
, and
Bhushan
,
B.
,
2012
, “The Structure and Mechanical Properties of Dragonfly Wings and Their Role on Flyability,”
C. R. Mec.
,
340
(
1–2
), pp.
3
17
.
46.
Tudu
,
P. C.
,
Ray
,
D.
, and
Mohapatra
,
A.
,
2018
, “
A Checklist of Indian Sea Pen (Cnidaria: Anthozoa: Pennatulacea)
,”
Indian J. Geo-Mar. Sci.
,
47
(
5
), pp.
1014
1017
. http://nopr.niscair.res.in/handle/123456789/44421
47.
Chimienti
,
G.
,
Angeletti
,
L.
, and
Mastrototaro
,
F.
,
2018
, “
Withdrawal Behaviour of the Red Sea Pen Pennatula Rubra (Cnidaria: Pennatulacea)
,”
Eur. Zool. J.
,
85
(
1
), pp.
64
70
.
48.
Kathleen
,
R.
,
2020
, “
Orange Sea-Pen (Ptilosarcus Gurneyi) (CC-BY-NC)
,” GBIF—the Glob. Biodivers. Inf. Facil.
49.
Chu
,
Y. J.
,
2016
, “
A New Biomimicry Marine Current Turbine: Study of Hydrodynamic Performance and Wake Using Software OpenFOAM
,”
J. Hydrodyn.
,
28
(
1
), pp.
125
141
.
50.
Fish
,
F. E.
, and
Battle
,
J. M.
,
1995
, “
Hydrodynamic Design of the Humpback Whale Flipper
,”
J. Morphol.
,
225
(
1
), pp.
51
60
.
51.
Post
,
M. L.
,
Decker
,
R.
,
Sapell
,
A. R.
, and
Hart
,
J. S.
,
2018
, “
Effect of Bio-Inspired Sinusoidal Leading-Edges on Wings
,”
Aerosp. Sci. Technol.
,
81
, pp.
128
140
.
52.
Skillen
,
A.
,
Revell
,
A.
,
Pinelli
,
A.
,
Piomelli
,
U.
, and
Favier
,
J.
,
2015
, “
Flow Over a Wing With Leading-Edge Undulations
,”
AIAA J.
,
53
(
2
), pp.
464
472
.
53.
The MathWorks Inc,
MATLAB Version
(R2021a),
The MathWorks Inc.
,
Natick, MA
.
54.
Wang
,
Y.
,
Cheng
,
W.
,
Du
,
R.
, and
Wang
,
S.
,
2020
, “
Bionic Drag Reduction for Box Girders Based on Ostracion Cubicus
,”
Energies
,
13
(
17
), p.
4392
.
55.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
(
1
), pp.
3
17
.
56.
Ross
,
I.
, and
Altman
,
A.
,
2011
, “
Wind Tunnel Blockage Corrections: Review and Application to Savonius Vertical-Axis Wind Turbines
,”
J. Wind Eng. Ind. Aerodyn.
,
99
(
5
), pp.
523
538
.
57.
Siram
,
O.
,
Kesharwani
,
N.
,
Sahoo
,
N.
, and
Saha
,
U. K.
,
2022
, “
Aerodynamic Design and Wind Tunnel Tests of Small-Scale Horizontal-Axis Wind Turbines for Low Tip Speed Ratio Applications
,”
ASME J. Sol. Energy Eng.
,
144
(
4
), p.
041009
.
58.
Ross
,
H.
, and
Polagye
,
B.
,
2020
, “
An Experimental Assessment of Analytical Blockage Corrections for Turbines
,”
Renewable Energy
,
152
, pp.
1328
1341
.
59.
Alexander
,
A. J.
, and
Holownia
,
B. P.
,
1978
, “
Wind Tunnel Tests on a Savonius Rotor
,”
J. Wind Eng. Ind. Aerodyn.
,
3
(
4
), pp.
343
351
.
60.
Ansys Inc.
,
Ansys Fluent (2021 R1)
,
Ansys Inc.
,
Canonsburg, PA
.
61.
Roy
,
S.
, and
Saha
,
U. K.
,
2013
, “
Review on the Numerical Investigations Into the Design and Development of Savonius Wind Rotors
,”
Renewable Sustainable Energy Rev.
,
24
, pp.
73
83
.
62.
Versteeg
,
H.
, and
Malalasekra
,
W.
,
2009
, “Methods for Dealing With Complex Geometries,”
Chapter 11 in An Introduction to Computational Fluid Dynamics: The Finite Volume Method
,
Pearson Education Ltd
,
Harlow, England
, pp.
318
356
.
63.
Sharma
,
S.
, and
Sharma
,
R. K.
,
2016
, “Performance Improvement of Savonius Rotor Using Multiple Quarter Blades—A CFD Investigation,”
Energy Convers. Manage.
,
127
, pp.
43
54
.
64.
Satrio
,
D.
,
Utama
,
I. K. A. P.
, and
Mukhtasor
,
2018
, “
Numerical Investigation of Contra Rotating Vertical-Axis Tidal-Current Turbine
,”
J. Mar. Sci. Appl.
,
17
(
2
), pp.
208
215
.
65.
Lua
,
K. B.
,
Lu
,
H.
, and
Lim
,
T. T.
,
2018
, “
Rotating Elliptic Cylinders in a Uniform Cross Flow
,”
J. Fluids Struct.
,
78
, pp.
36
51
.
66.
Bangga
,
G.
,
Dessoky
,
A.
,
Wu
,
Z.
,
Rogowski
,
K.
, and
Hansen
,
M. O. L.
,
2020
, “
Accuracy and Consistency of CFD and Engineering Models for Simulating Vertical Axis Wind Turbine Loads
,”
Energy
,
206
, p.
118087
.
67.
Alom
,
N.
,
Saha
,
U. K.
, and
Dewan
,
A.
,
2021
, “
In the Quest of an Appropriate Turbulence Model for Analyzing the Aerodynamics of a Conventional Savonius (S-Type) Wind Rotor
,”
J. Renewable Sustainable Energy
,
13
(2), p.
023313
.
68.
Edwards
,
J. M.
,
Angelo Danao
,
L.
, and
Howell
,
R. J.
,
2012
, “
Novel Experimental Power Curve Determination and Computational Methods for the Performance Analysis of Vertical Axis Wind Turbines
,”
ASME J. Sol. Energy Eng.
,
134
(
3
), p.
031008
.
69.
Mohammadi
,
M.
,
Lakestani
,
M.
, and
Mohamed
,
M. H.
,
2018
, “
Intelligent Parameter Optimization of Savonius Rotor Using Artificial Neural Network and Genetic Algorithm
,”
Energy
,
143
, pp.
56
68
.
70.
Celik
,
I. B.
,
Ghia
,
U.
,
Roache
,
P. J.
,
Freitas
,
C. J.
,
Coleman
,
H.
, and
Raad
,
P. E.
,
2008
, “
Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications
,”
ASME J. Fluids Eng.
,
130
(
7
), p.
078001
.
71.
Roache
,
P. J.
,
1994
, “
Perspective: A Method for Uniform Reporting of Grid Refinement Studies
,”
ASME J. Fluids Eng.
,
116
(
3
), pp.
405
413
.
72.
Eça
,
L.
, and
Hoekstra
,
M.
,
2014
, “
A Procedure for the Estimation of the Numerical Uncertainty of CFD Calculations Based on Grid Refinement Studies
,”
J. Comput. Phys.
,
262
, pp.
104
130
.
73.
Franchina
,
N.
,
Persico
,
G.
, and
Savini
,
M.
,
2019
, “
2D-3D Computations of a Vertical Axis Wind Turbine Flow Field: Modeling Issues and Physical Interpretations
,”
Renewable Energy
,
136
, pp.
1170
1189
.
74.
Ushiyama
,
I.
,
Nagai
,
H.
, and
Shinoda
,
J.
,
1986
, “
Experimentally Determining the Optimum Design Configuration for Savonius Rotors
,”
Trans. Jp Soc. Mech. Eng. Ser. B
,
52
(
480
), pp.
2973
2982
.
You do not currently have access to this content.