Abstract

The Compound Parabolic Concentrator (CPC), when coupled with the photovoltaic system, namely the Concentrated Photovoltaic Thermal System (CPVT), makes utilizing solar energy efficient. The major challenge that hinders the electrical and thermal performance of the CPC–CPVT system is the non-uniform heat flux distribution on the absorber surface. In the present paper, detailed ray-tracing simulations have been carried out to understand the heat flux distribution characteristics of CPC with different geometrical conditions, and those are concentration ratio, truncation ratio, incident angle, and average heat flux on the absorber surface. To have a thorough understanding, the analysis has been carried out in multiple steps. First, it is performed by analyzing the effect of concentration ratio and incident angle on heat flux distribution characteristics at a fixed truncation ratio. Second, investigations have been carried out to understand the heat flux distribution characteristics at different truncation ratios and different incident angles by keeping the concentration ratio constant. Local concentration ratio and non-uniformity index have been employed to quantify the non-uniformity of heat flux distribution on the absorber surface. It has been observed that the 0-deg incidence angle is the most effective angle to achieve uniform heat flux distribution on the absorber surface. This paper sheds insight into the heat flux distribution characteristics on the absorber surface of a CPC–CPVT system which can be used by the research community for designing an effective CPVT system from the perspective of uniform heat flux distribution on the absorber surface.

References

1.
Khan
,
Z.
,
Ali
,
S.
,
Umar
,
M.
,
Kirikkaleli
,
D.
, and
Jiao
,
Z.
,
2020
, “
Consumption-Based Carbon Emissions and International Trade in G7 Countries: The Role of Environmental Innovation and Renewable Energy
,”
Sci. Total Environ.
,
730
, p.
138945
.
2.
Prashar
,
A.
,
2019
, “
Towards Sustainable Development in Industrial Small and Medium-Sized Enterprises: An Energy Sustainability Approach
,”
J. Clean. Prod.
,
235
, pp.
977
996
.
3.
Sharma
,
N. K.
,
Tiwari
,
P. K.
, and
Sood
,
Y. R.
,
2012
, “
Solar Energy in India: Strategies, Policies, Perspectives and Future Potential
,”
Renew. Sustain. Energy Rev.
,
16
(
1
), pp.
933
941
.
4.
Tian
,
Y.
, and
Zhao
,
C. Y.
,
2013
, “
A Review of Solar Collectors and Thermal Energy Storage in Solar Thermal Applications
,”
Appl. Energy
,
104
, pp.
538
553
.
5.
Winston
,
R.
,
1991
, “
Nonimaging Optics
,”
Sci. Am. a Div. Nat. Am.
,
264
(
3
), pp.
76
81
.
6.
Gu
,
X.
,
Taylor
,
R. A.
,
Morrison
,
G.
, and
Rosengarten
,
G.
,
2014
, “
Theoretical Analysis of a Novel, Portable, CPC-Based Solar Thermal Collector for Methanol Reforming
,”
Appl. Energy
,
119
, pp.
467
475
.
7.
Widyolar
,
B.
,
Jiang
,
L.
, and
Winston
,
R.
,
2017
, “
Thermodynamics and the Segmented Compound Parabolic Concentrator
,”
J. Photonics Energy
,
7
(
2
), p.
028002
.
8.
Winston
,
R.
, and
Jiang
,
L.
,
2015
, “
A New Generation of Medium Temperature Collector for Solar Cooling
,”
ASME J. Sol. Energy Eng.
,
137
(
5
), p.
051006
.
9.
Jadhav
,
A. S.
,
Gudekar
,
A. S.
,
Patil
,
R. G.
,
Kale
,
D. M.
,
Panse
,
S. V.
, and
Joshi
,
J. B.
,
2013
, “
Performance Analysis of a Novel and Cost Effective CPC System
,”
Energy Convers. Manag.
,
66
, pp.
56
65
.
10.
Baig
,
H.
,
Sarmah
,
N.
,
Heasman
,
K. C.
, and
Mallick
,
T. K.
,
2013
, “
Numerical Modelling and Experimental Validation of a Low Concentrating Photovoltaic System
,”
Sol. Energy Mater. Sol. Cells
,
113
, pp.
201
219
.
11.
Tabor
,
H.
,
1984
, “
Comment-The CPC Concept-Theory and Practice
,”
Sol. Energy
,
33
(
6
), pp.
629
630
.
12.
Chaves
,
J.
,
2017
,
Introduction to Nonimaging Optics
,
CRC Press
,
Boca Raton FL
.
13.
Carvalho
,
M. J.
,
Collares-Pereira
,
M.
,
Gordon
,
J. M.
, and
Rabl
,
A.
,
1985
, “
Truncation of CPC Solar Collectors and Its Effect on Energy Collection
,”
Sol. Energy
,
35
(
5
), pp.
393
399
.
14.
Ustaoglu
,
A.
,
Alptekin
,
M.
,
Okajima
,
J.
, and
Maruyama
,
S.
,
2016
, “
Evaluation of Uniformity of Solar Illumination on the Receiver of Compound Parabolic Concentrator (CPC)
,”
Sol. Energy
,
132
, pp.
150
164
.
15.
More
,
S. S.
,
Ravindranath
,
G.
,
More
,
S.
, and
More
,
S.
,
2019
, “
Analysis of Compound Parabolic Through Concentrator for Diagnosis of Flux Distribution on Receiver
,”
J. Photonics Energy
,
9
(
01
), p.
1
.
16.
Sharaf
,
O. Z.
, and
Orhan
,
M. F.
,
2015
, “
Concentrated Photovoltaic Thermal (CPVT) Solar Collector Systems: Part II—Implemented Systems, Performance Assessment, and Future Directions
,”
Renew. Sustain. Energy Rev.
,
50
, pp.
1566
1633
.
17.
Lämmle
,
M.
,
Kroyer
,
T.
,
Fortuin
,
S.
,
Wiese
,
M.
, and
Hermann
,
M.
,
2016
, “
Development and Modelling of Highly-Efficient PVT Collectors With Low-Emissivity Coatings
,”
Sol. Energy
,
130
, pp.
161
173
.
18.
Lämmle
,
M.
,
Oliva
,
A.
,
Hermann
,
M.
,
Kramer
,
K.
, and
Kramer
,
W.
,
2017
, “
PVT Collector Technologies in Solar Thermal Systems: A Systematic Assessment of Electrical and Thermal Yields With the Novel Characteristic Temperature Approach
,”
Sol. Energy
,
155
, pp.
867
879
.
19.
Koronaki
,
I. P.
, and
Nitsas
,
M. T.
,
2018
, “
Experimental and Theoretical Performance Investigation of Asymmetric Photovoltaic/Thermal Hybrid Solar Collectors Connected in Series
,”
Renew. Energy
,
118
, pp.
654
672
.
20.
Vance
,
W.
,
Gustafson
,
M.
,
Huang
,
H.
, and
Menart
,
J.
,
2017
, “
Computational Study of a Fixed Orientation Photovoltaic Compound Parabolic Concentrator
,”
ASME J. Sol. Energy Eng.
,
139
(
2
), p.
021002
.
21.
Ma
,
T.
,
Li
,
M.
, and
Kazemian
,
A.
,
2020
, “
Photovoltaic Thermal Module and Solar Thermal Collector Connected in Series to Produce Electricity and High-Grade Heat Simultaneously
,”
Appl. Energy
,
261
, p.
114380
.
22.
Tian
,
M.
,
Su
,
Y.
,
Zheng
,
H.
,
Pei
,
G.
,
Li
,
G.
, and
Riffat
,
S.
,
2018
, “
A Review on the Recent Research Progress in the Compound Parabolic Concentrator (CPC) for Solar Energy Applications
,”
Renew. Sustain. Energy Rev.
,
82
(
1
), pp.
1272
1296
.
23.
Li
,
G.
,
Pei
,
G.
,
Ji
,
J.
,
Yang
,
M.
,
Su
,
Y.
, and
Xu
,
N.
,
2015
, “
Numerical and Experimental Study on a PV/T System With Static Miniature Solar Concentrator
,”
Sol. Energy
,
120
, pp.
565
574
.
24.
Gu
,
X.
,
Taylor
,
R. A.
, and
Rosengarten
,
G.
,
2014
, “
Analysis of a New Compound Parabolic Concentrator-Based Solar Collector Designed for Methanol Reforming
,”
ASME J. Sol. Energy Eng.
,
136
(
4
), p.
041012
.
25.
Patel
,
D. K.
,
Brahmbhatt
,
P. K.
, and
Panchal
,
H.
,
2018
, “
A Review on Compound Parabolic Solar Concentrator for Sustainable Development
,”
Int. J. Ambient Energy
,
39
(
5
), pp.
533
546
.
26.
Chandan
,
Dey
,
S.
,
Sujan Kumar
,
P.
,
Reddy
,
K. S.
, and
Pesala
,
B.
,
2020
, “
Optical and Electrical Performance Investigation of Truncated 3X Non-Imaging Low Concentrating Photovoltaic-Thermal Systems
,”
Energy Convers. Manag.
,
220
(
1
), p.
113056
.
27.
Paul
,
D. I.
,
2015
, “
Theoretical and Experimental Optical Evaluation and Comparison of Symmetric 2D CPC and V-Trough Collector for Photovoltaic Applications
,”
Int. J. Photoenergy
,
2015
, pp.
1
13
.
28.
Khalid
,
M.
,
Wei
,
J.
,
Zhang
,
G.
,
Xie
,
H.
,
Fang
,
J.
,
Qaisrani
,
M. A.
,
Wang
,
Z.
, and
Mujib
,
U. R
,
2019
, “
Optical Performance of Quasi-Stationary, Low-Concentration, and Low-Profile Compound Parabolic Concentrators
,”
J. Renew. Sustain. Energy
,
11
(
5
), p.
053701
.
29.
Xu
,
R.
, and
Tang
,
R.
,
2021
, “
Geometric Characteristics and Optical Performance of ACPCs for Integration With Roofing Structure of Buildings
,”
Energy Reports
,
7
(
6
), pp.
2043
2056
.
30.
Zhang
,
H.
,
Chen
,
H.
,
Han
,
Y.
,
Liu
,
H.
, and
Li
,
M.
,
2017
, “
Experimental and Simulation Studies on a Novel Compound Parabolic Concentrator
,”
Renew. Energy
,
113
, pp.
784
794
.
31.
Sarmah
,
N.
,
Richards
,
B. S.
, and
Mallick
,
T. K.
,
2014
, “
Design, Development and Indoor Performance Analysis of a Low Concentrating Dielectric Photovoltaic Module
,”
Sol. Energy
,
103
, pp.
390
401
.
32.
Xu
,
R.
,
Ma
,
Y.
,
Yan
,
M.
,
Zhang
,
C.
,
Xu
,
S.
, and
Wang
,
R.
,
2018
, “
Effects of Deformation of Cylindrical Compound Parabolic Concentrator (CPC) on Concentration Characteristics
,”
Sol. Energy
,
176
, pp.
73
86
.
33.
Brogren
,
M.
,
Nostell
,
P.
, and
Karlsson
,
B.
,
2001
, “
Optical Efficiency of a PV–Thermal Hybrid CPC Module for High Latitudes
,”
Sol. Energy
,
69
(
supplement 6
), pp.
173
185
.
34.
Hiraki
,
H.
,
Hiraki
,
A.
,
Maeda
,
M.
, and
Takahashi
,
Y.
,
2012
, “
Unique Features of Cylindrical Type Solar-Module Contrasted With Plane or Conventional Type Ones
,”
J. Phys. Conf. Ser.
,
379
, p.
012002
.
35.
Goma
,
S.
,
Yoshioka
,
K.
, and
Saitoh
,
T.
,
1997
, “
Effect of Concentration Distribution on Cell Performance for Low-Concentrators With a Three-Dimensional Lens
,”
Sol. Energy Mater. Sol. Cells
,
47
(
1–4
), pp.
339
344
.
36.
Luque
,
A.
,
Sala
,
G.
, and
Arboiro
,
J. C.
,
1998
, “
Electric and Thermal Model for Non-Uniformly Illuminated Concentration Cells
,”
Sol. Energy Mater. Sol. Cells
,
51
(
3–4
), pp.
269
290
.
37.
Hatwaambo
,
S.
,
Hakansson
,
H.
,
Roos
,
A.
, and
Karlsson
,
B.
,
2009
, “
Mitigating the Non-Uniform Illumination in Low Concentrating CPCs Using Structured Reflectors
,”
Sol. Energy Mater. Sol. Cells
,
93
(
11
), pp.
2020
2024
.
38.
Proell
,
M.
,
Osgyan
,
P.
,
Karrer
,
H.
, and
Brabec
,
C. J.
,
2017
, “
Experimental Efficiency of a Low Concentrating CPC PVT Flat Plate Collector
,”
Sol. Energy
,
147
, pp.
463
469
.
39.
Chandan
,
Baig
,
H.
,
ali Tahir
,
A.
,
Reddy
,
K. S.
,
Mallick
,
T. K.
, and
Pesala
,
B.
,
2022
, “
Performance Improvement of a Desiccant Based Cooling System by Mitigation of Non-Uniform Illumination on the Coupled Low Concentrating Photovoltaic Thermal Units
,”
Energy Convers. Manag.
,
257
(
1
), p.
115438
.
40.
Siefer
,
G.
, and
Bett
,
A. W.
,
2014
, “
Analysis of Temperature Coefficients for III-V Multi-Junction Concentrator Cells
,”
Prog. Photovoltaics Res. Appl.
,
22
(
5
), pp.
515
524
.
41.
Domenech-Garret
,
J.-L.
,
2011
, “
Cell Behaviour Under Different Non-Uniform Temperature and Radiation Combined Profiles Using a Two Dimensional Finite Element Model
,”
Sol. Energy
,
85
(
2
), pp.
256
264
.
42.
Baig
,
H.
,
Heasman
,
K. C.
, and
Mallick
,
T. K.
,
2012
, “
Non-Uniform Illumination in Concentrating Solar Cells
,”
Renew. Sustain. Energy Rev.
,
16
(
8
), pp.
5890
5909
.
43.
Cabral
,
D.
,
Gomes
,
J.
, and
Karlsson
,
B.
,
2019
, “
Performance Evaluation of Non-Uniform Illumination on a Transverse Bifacial PVT Receiver in Combination With a CPC Geometry
,”
Sol. Energy
,
194
, pp.
696
708
.
44.
Paul
,
D. I.
,
2019
, “
Optical Performance Analysis and Design Optimisation of Multisectioned Compound Parabolic Concentrators for Photovoltaics Application
,”
Int. J. Energy Res.
,
43
(
1
), pp.
358
378
.
45.
Duffie
,
J. A.
, and
Beckman
,
W. A.
,
2013
,
Solar Engineering of Thermal Processes
,
John Wiley & Sons, Inc
.,
Hoboken, NJ,
.
46.
Chen
,
L.
,
Chen
,
J.-X.
, and
Zhang
,
X.-R.
,
2015
, “
Numerical Simulation on the Optical and Thermal Performance of a Modified Integrated Compound Parabolic Solar Concentrator
,”
Int. J. Energy Res.
,
39
(
13
), pp.
1843
1857
.
47.
Cardoso
,
J. P.
,
Mutuberria
,
A.
,
Marakkos
,
C.
,
Schoettl
,
P.
,
Osório
,
T.
, and
Les
,
I.
,
2018
, “
New Functionalities for the Tonatiuh Ray-Tracing Software
,”
AIP Conference Proceedings
,
Santiago, Chile
,
Sept. 26–29
, p.
210010
.
48.
Blanco
,
M. J.
,
Amieva
,
J. M.
, and
Mancillas
,
A.
,
2005
, “
The Tonatiuh Software Development Project: An Open Source Approach to the Simulation of Solar Concentrating Systems
,”
Computers and Information in Engineering
,
Orlando, FL
,
Nov. 5–11
, ASMEDC, pp.
157
164
.
49.
Winston
,
R.
,
1974
, “
Principles of Solar Concentrators of a Novel Design
,”
Sol. Energy
,
16
(
2
), pp.
89
95
.
You do not currently have access to this content.