Abstract

The Heliostat Consortium (HelioCon) was launched in 2021 to advance heliostat technology. This work presents a collection of baseline case studies for the technoeconomic analysis (TEA) of candidate heliostat improvements for concentrating solar power (CSP) and concentrated solar thermal (CST) systems that employ central receivers. The case studies we develop include a large-scale CSP plant, a smaller, modular CSP plant, and a small CST plant used for industrial process heat. In this work, we also propose a novel metric for TEA of a plant component technology that recasts relative changes in levelized system costs into component-specific capital cost budgets. This measure, which we refer to as the equivalent breakeven installed cost, is the maximum budget for the technology component that leads to improved levelized costs. Finally, we perform a parametric analysis to show the impact of candidate technologies on the levelized cost of heat and, by extension, equivalent breakeven installed cost.

References

1.
Zhu
,
G.
,
Augustine
,
C.
,
Mitchell
,
R.
,
Muller
,
M.
,
Kurup
,
P.
,
Zolan
,
A.
,
Yellapantula
,
S.
, et al
,
2023
, “
HelioCon: A Roadmap for Advanced Heliostat Technologies for Concentrating Solar Power
,”
Sol. Energy
,
264
, p.
111917
.
2.
Zhu
,
G.
,
Augustine
,
C.
,
Mitchell
,
R.
,
Muller
,
M.
,
Kurup
,
P.
,
Zolan
,
A.
,
Yellapantula
,
S.
, et al
,
2022
, “Roadmap to Advance Heliostat Technologies for Concentrating Solar-Thermal Power,” Technical Report No. NREL/TP-5700-83041, National Renewable Energy Laboratory, Golden, CO.
3.
Dowling
,
A. W.
,
Zheng
,
T.
, and
Zavala
,
V. M.
,
2017
, “
Economic Assessment of Concentrated Solar Power Technologies: A Review
,”
Renewable Sustainable Energy Rev.
,
72
, pp.
1019
1032
.
4.
Musi
,
R.
,
Grange
,
B.
,
Sgouridis
,
S.
,
Guedez
,
R.
,
Armstrong
,
P.
,
Slocum
,
A.
, and
Calvet
,
N.
,
2017
, “
Techno-Economic Analysis of Concentrated Solar Power Plants in Terms of Levelized Cost of Electricity
,”
AIP Conf. Proc.
,
1850
, pp.
1
8
.
5.
McMillan
,
C.
,
Xi
,
W.
,
Zhang
,
J.
,
Masanet
,
E.
,
Kurup
,
P.
,
Schoeneberger
,
C.
,
Meyers
,
S.
, and
Margolis
,
R.
,
2021
, “
Evaluating the Economic Parity of Solar for Industrial Process Heat
,”
Solar Energy Adv.
,
1
, p.
100011
.
6.
Rahbari
,
A.
,
Shirazi
,
A.
,
Venkataraman
,
M. B.
, and
Pye
,
J.
,
2019
, “
A Solar Fuel Plant via Super-Critical Water Gasification Integrated With Fischer–Tropsch Synthesis: Steady-State Modelling and Techno-Economic Assessment
,”
Energy Convers. Manage.
,
184
, pp.
636
648
.
7.
Turchi
,
C. S.
, and
Heath
,
G. A.
,
2013
, “Molten Salt Power Tower Cost Model for the System Advisor Model (SAM),” Technical Report No. NREL/TP-5500-57625, National Renewable Energy Laboratory Golden, CO (USA).
8.
Emes
,
M.
,
Yellapantula
,
S.
,
Sment
,
J.
,
Armijo
,
K.
,
Muller
,
M.
,
Mehos
,
M.
,
Brost
,
R.
, and
Arjomandi
,
M.
,
2024
, “
Heliostat Consortium: Gap Analysis on State of the Art in Wind Load Design
,”
ASME J. Sol. Energy Eng.
,
146
(
6
), p.
061001
.
9.
Säck
,
J. P.
,
Roeb
,
M.
,
Sattler
,
C.
,
Pitz-Paal
,
R.
, and
Heinzel
,
A.
,
2012
, “
Development of a System Model for a Hydrogen Production Process on a Solar Tower
,”
Sol. Energy
,
86
(
1
), pp.
99
111
.
10.
Wagner
,
M.
, and
Wendelin
,
T.
,
2018
, “
SolarPILOT: A Power Tower Solar Field Layout and Characterization Tool
,”
Sol. Energy
,
171
, pp.
185
196
.
11.
Li
,
L.
,
Wang
,
B.
,
Pye
,
J.
, and
Lipiński
,
W.
,
2020
, “
Temperature-Based Optical Design, Optimization and Economics of Solar Polar-Field Central Receiver Systems With an Optional Compound Parabolic Concentrator
,”
Sol. Energy
,
206
, pp.
1018
1032
.
12.
Picotti
,
G.
,
Cholette
,
M. E.
,
Wang
,
Y.
,
Anderson
,
C. B.
,
Steinberg
,
T. A.
,
Pye
,
J.
, and
Manzolini
,
G.
,
2022
, “
HelioSoil: A Python Library for Heliostat Soiling Analysis and Cleaning Optimization
,”
SolarPACES Conference Proceedings, Proceedings of 2022 SolarPACES Conference
,
Albuquerque, NM
,
Sept. 27–30
, pp.
1
9
, Paper No. 719.
13.
Wales
,
J. G.
,
Zolan
,
A. J.
,
Newman
,
A. M.
, and
Wagner
,
M. J.
,
2022
, “
Optimizing Vehicle Fleet and Assignment for Concentrating Solar Power Plant Heliostat Washing
,”
IISE Trans.
,
54
(
6
), pp.
550
562
.
14.
Anderson
,
C. B.
,
Picotti
,
G.
,
Cholette
,
M. E.
,
Leslie
,
B.
,
Steinberg
,
T. A.
, and
Manzolini
,
G.
,
2023
, “
Heliostat-Field Soiling Predictions and Cleaning Resource Optimization for Solar Tower Plants
,”
Appl. Energy
,
352
, p.
121963
.
15.
Zolan
,
A.
, and
Mehos
,
M.
,
2022
, “
Wash Vehicle Fleet Sizing for Contingency Planning Against Dust Storms
,”
AIP Conf. Proc.
,
2445
, pp.
1
8
.
16.
Augustine
,
C.
,
Zolan
,
A.
, and
Armijo
,
K.
,
2024
, “
Analysis of Gaps in Techno-Economic Analysis to Advance Heliostat Technologies for Concentrating Solar-Thermal Power
,”
ASME J. Sol. Energy Eng.
,
146
(
6
), p.
061002
.
17.
von Reeken
,
F.
,
Nicodemo
,
D.
,
Keck
,
T.
,
Weinrebe
,
G.
, and
Balz
,
M.
,
2016
, “
Key Aspects of Cost Effective Collector and Solar Field Design
,”
AIP Conf. Proc.
,
1734
.
18.
Zolan
,
A.
,
Augustine
,
C.
, and
Armijo
,
K.
,
2023
, “
Equivalent Breakeven Installed Cost: A Tradeoff-Informed Measure for Technoeconomic Analysis of Candidate Heliostat Improvements
,”
SolarPACES Conference Proceedings 1, Proceedings of 2022 SolarPACES Conference
,
Albuquerque, NM
,
Sept. 27–30
, pp.
1
8
, Paper No. 783.
19.
Asselineau
,
C. A.
,
Fontalvo
,
A.
,
Wang
,
S.
,
Venn
,
F.
,
Pye
,
J.
, and
Coventry
,
J.
,
2023
, “
Techno-Economic Assessment of a Numbering-up Approach for a 100 MWe Third Generation Sodium-Salt CSP System
,”
Sol. Energy
,
263
, p.
111935
.
20.
Armijo
,
K.
,
Muller
,
M.
,
Tsvankin
,
D.
, and
Madden
,
D.
,
2024
, “
Review and Gap Analysis of Heliostat Components & Controls
,”
ASME J. Sol. Energy Eng.
,
146
(
6
).
21.
McKay
,
M. D.
,
Beckman
,
R. J.
, and
Conover
,
W. J.
,
1979
, “
Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code
,”
Technometrics
,
21
(
2
), pp.
239
245
.
You do not currently have access to this content.