Abstract

The research collection aims at finding the various possible opportunities for the effective integration of shallow geothermal energy (SGE) to decrease the energy demand in the built environment and to reduce emission associated with it. The integration of SGE with heat pump using pipe network is extensively reviewed. The open-loop and closed-loop (vertical, horizontal, energy piles) pipe networks are the most common type of ground heat exchanging methods. The objective of the review is to improve the heat exchanger effectiveness through various design aspects according to the local climatic conditions. This comprehensive review part I contains the research details pertaining to the last two decades about ground heat exchangers (geometrical aspects, borehole material, grout material, thermal response test, analytical and numerical models). Also, the factors influencing the ground heat exchanger’s performance such as heat transfer fluid (HTF), groundwater flow, and soil properties are discussed in detail. This paper highlights the recent research findings and potential research points in the ground heat exchanger.

References

1.
Xi
,
J.
,
Li
,
Y.
,
Liu
,
M.
, and
Wang
,
R. Z.
,
2017
, “
Study on the Thermal Effect of the Ground Heat Exchanger of GSHP in the Eastern China Area
,”
Energy
,
141
, pp.
56
65
.
2.
Cho
,
H.
, and
Choi
,
J. M.
,
2014
, “
The Quantitative Evaluation of Design Parameter’s Effects on a Ground Source Heat Pump System
,”
Renewable Energy
,
65
, pp.
2
6
.
3.
Noorollahi
,
Y.
,
Saeidi
,
R.
,
Mohammadi
,
M.
,
Amiri
,
A.
, and
Hosseinzadeh
,
M.
,
2018
, “
The Effects of Ground Heat Exchanger Parameters Changes on Geothermal Heat Pump Performance—A Review
,”
Appl. Therm. Eng.
,
129
, pp.
1645
1658
.
4.
Yu
,
X.
,
Zhai
,
X. Q.
, and
Wang
,
R. Z.
,
2010
, “
Design and Performance of a Constant Temperature and Humidity Air-Conditioning System Driven by Ground Source Heat Pumps in Winter
,”
Energy Convers. Manage.
,
51
(
11
), pp.
2162
2168
.
5.
Zhang
,
M.
,
Gong
,
G.
, and
Zeng
,
L.
,
2021
, “
Investigation for a Novel Optimization Design Method of Ground Source Heat Pump Based on Hydraulic Characteristics of Buried Pipe Network
,”
Appl. Therm. Eng.
,
182
, p.
116069
.
6.
Kjellsson
,
E.
,
Hellström
,
G.
, and
Perers
,
B.
,
2010
, “
Optimization of Systems With the Combination of Ground-Source Heat Pump and Solar Collectors in Dwellings
,”
Energy
,
35
(
6
), pp.
2667
2673
.
7.
Diao
,
N.
,
Li
,
Q.
, and
Fang
,
Z.
,
2004
, “
Heat Transfer in Ground Heat Exchangers With Groundwater Advection
,”
Int. J. Therm. Sci.
,
43
(
12
), pp.
1203
1211
.
8.
Zhou
,
Y.
,
Zhang
,
Y.
, and
Xu
,
Y.
,
2018
, “
Influence of Grout Thermal Properties on Heat-Transfer Performance of Ground Source Heat Exchangers
,”
Sci. Technol. Built Environ.
,
24
(
5
), pp.
461
469
.
9.
Rivera
,
J. A.
,
Blum
,
P.
, and
Bayer
,
P.
,
2015
, “
Analytical Simulation of Groundwater Flow and Land Surface Effects on Thermal Plumes of Borehole Heat Exchangers
,”
Appl. Energy
,
146
, pp.
421
433
.
10.
Luo
,
J.
,
Tuo
,
J.
,
Huang
,
W.
,
Zhu
,
Y. Q.
,
Jiao
,
Y. Y.
,
Xiang
,
W.
, and
Rohn
,
J.
,
2018
, “
Influence of Groundwater Levels on Effective Thermal Conductivity of the Ground and Heat Transfer Rate of Borehole Heat Exchangers
,”
Appl. Therm. Eng.
,
128
, pp.
508
516
.
11.
Marmaras
,
J.
,
Burbank
,
J.
, and
Kosanovic
,
D. B.
,
2016
, “
Primary-Secondary De-Coupled Ground Source Heat Pump Systems Coefficient of Performance Optimization Through Entering Water Temperature Control
,”
Appl. Therm. Eng.
,
96
, pp.
107
116
.
12.
Florides
,
G.
, and
Kalogirou
,
S.
,
2007
, “
Ground Heat Exchangers—A Review of Systems, Models and Applications
,”
Renewable Energy
,
32
(
15
), pp.
2461
2478
.
13.
Javadi
,
H.
,
Mousavi Ajarostaghi
,
S. S.
,
Rosen
,
M. A.
, and
Pourfallah
,
M.
,
2019
, “
Performance of Ground Heat Exchangers: A Comprehensive Review of Recent Advances
,”
Energy
,
178
, pp.
207
233
.
14.
Aresti
,
L.
,
Christodoulides
,
P.
, and
Florides
,
G.
,
2018
, “
A Review of the Design Aspects of Ground Heat Exchangers
,”
Renewable Sustainable Energy Rev.
,
92
, pp.
757
773
.
15.
Wang
,
Y.
,
Wong
,
K. K. L.
,
Liu
,
Q.-H.
,
Jin
,
Y.-T.
, and
Tu
,
J.
,
2012
, “
Improvement of Energy Efficiency for an Open-Loop Surface Water Source Heat Pump System via Optimal Design of Water-Intake
,”
Energy Build.
,
51
, pp.
93
100
.
16.
Kindaichi
,
S.
,
Nishina
,
D.
,
Wen
,
L.
, and
Kannaka
,
T.
,
2015
, “
Potential for Using Water Reservoirs as Heat Sources in Heat Pump Systems
,”
Appl. Therm. Eng.
,
76
, pp.
47
53
.
17.
Farabi-Asl
,
H.
,
Fujii
,
H.
, and
Kosukegawa
,
H.
,
2018
, “
Cooling Tests, Numerical Modeling and Economic Analysis of Semi-Open Loop Ground Source Heat Pump System
,”
Geothermics
,
71
, pp.
34
45
.
18.
Zhu
,
N.
,
Hu
,
P.
,
Wang
,
W.
,
Yu
,
J.
, and
Lei
,
F.
,
2015
, “
Performance Analysis of Ground Water-Source Heat Pump System With Improved Control Strategies for Building Retrofit
,”
Renewable Energy
,
80
, pp.
324
330
.
19.
Tu
,
K.
,
Wu
,
Q.
, and
Sun
,
H.
,
2019
, “
A Mathematical Model and Thermal Performance Analysis of Single-Well Circulation (SWC) Coupled Ground Source Heat Pump (GSHP) Systems
,”
Appl. Therm. Eng.
,
147
, pp.
473
481
.
20.
Bao
,
T.
,
Liu
,
Z.
,
Meldrum
,
J.
,
Green
,
C.
,
Xue
,
P.
, and
Vitton
,
S.
,
2018
, “
Field Tests and Multiphysics Analysis of a Flooded Shaft for Geothermal Applications With Mine Water
,”
Energy Convers. Manage.
,
169
, pp.
174
185
.
21.
Limanskiy
,
A. V.
, and
Vasilyeva
,
M. A.
,
2016
, “
Using of Low-Grade Heat Mine Water as a Renewable Source of Energy in Coal-Mining Regions
,”
Ecol. Eng.
,
91
, pp.
41
43
.
22.
Peralta Ramos
,
E.
,
Breede
,
K.
, and
Falcone
,
G.
,
2015
, “
Geothermal Heat Recovery From Abandoned Mines: A Systematic Review of Projects Implemented Worldwide and a Methodology for Screening New Projects
,”
Environ. Earth Sci.
,
73
(
11
), pp.
6783
6795
.
23.
Hall
,
A.
,
Scott
,
J. A.
, and
Shang
,
H.
,
2011
, “
Geothermal Energy Recovery From Underground Mines
,”
Renewable Sustainable Energy Rev.
,
15
(
2
), pp.
916
924
.
24.
Guo
,
P.
,
He
,
M.
,
Zheng
,
L.
, and
Zhang
,
N.
,
2017
, “
A Geothermal Recycling System for Cooling and Heating in Deep Mines
,”
Appl. Therm. Eng.
,
116
, pp.
833
839
.
25.
Watzlaf
,
G. R.
, and
Ackman
,
T. E.
,
2006
, “
Underground Mine Water for Heating and Cooling Using Geothermal Heat Pump Systems
,”
Mine Water Environ.
,
25
(
1
), pp.
1
14
.
26.
Athresh
,
A. P.
,
Al-Habaibeh
,
A.
, and
Parker
,
K.
,
2016
, “
The Design and Evaluation of an Open Loop Ground Source Heat Pump Operating in an Ochre-Rich Coal Mine Water Environment
,”
Int. J. Coal Geol.
,
164
, pp.
69
76
.
27.
Al-Habaibeh
,
A.
,
Athresh
,
A. P.
, and
Parker
,
K.
,
2018
, “
Performance Analysis of Using Mine Water From an Abandoned Coal Mine for Heating of Buildings Using an Open Loop Based Single Shaft GSHP System
,”
Appl. Energy
,
211
, pp.
393
402
.
28.
Loredo
,
C.
,
Roqueñí
,
N.
, and
Ordóñez
,
A.
,
2016
, “
Modelling Flow and Heat Transfer in Flooded Mines for Geothermal Energy Use: A Review
,”
Int. J. Coal Geol.
,
164
, pp.
115
122
.
29.
Guo
,
P.
,
Zheng
,
L.
,
Sun
,
X.
,
He
,
M.
,
Wang
,
Y.
, and
Shang
,
J.
,
2018
, “
Sustainability Evaluation Model of Geothermal Resources in Abandoned Coal Mine
,”
Appl. Therm. Eng.
,
144
, pp.
804
511
.
30.
Milenić
,
D.
,
Vasiljević
,
P.
, and
Vranješ
,
A.
,
2010
, “
Criteria for Use of Groundwater as Renewable Energy Source in Geothermal Heat Pump Systems for Building Heating/Cooling Purposes
,”
Energy Build.
,
42
(
5
), pp.
649
657
.
31.
Doherty
,
P. S.
,
Al-Huthaili
,
S.
,
Riffat
,
S. B.
, and
Abodahab
,
N.
,
2004
, “
Ground Source Heat Pump––Description and Preliminary Results of the Eco House System
,”
Appl. Therm. Eng.
,
24
(
17–18
), pp.
2627
2641
.
32.
Sangi
,
R.
, and
Müller
,
D.
,
2018
, “
Dynamic Modelling and Simulation of a Slinky-Coil Horizontal Ground Heat Exchanger Using Modelica
,”
J. Build. Eng.
,
16
, pp.
159
168
.
33.
Wang
,
D.
,
Lu
,
L.
, and
Cui
,
P.
,
2016
, “
A new Analytical Solution for Horizontal Geothermal Heat Exchangers With Vertical Spiral Coils
,”
Int. J. Heat Mass Transfer
,
100
, pp.
111
120
.
34.
Saeidi
,
R.
,
Noorollahi
,
Y.
, and
Esfahanian
,
V.
,
2018
, “
Numerical Simulation of a Novel Spiral Type Ground Heat Exchanger for Enhancing Heat Transfer Performance of Geothermal Heat Pump
,”
Energy Convers. Manage.
,
168
, pp.
296
307
.
35.
Dehghan B
,
B.
,
2017
, “
Experimental and Computational Investigation of the Spiral Ground Heat Exchangers for Ground Source Heat Pump Applications
,”
Appl. Therm. Eng.
,
121
, pp.
908
921
.
36.
Dehghan B
,
B.
,
2018
, “
Effectiveness of Using Spiral Ground Heat Exchangers in Ground Source Heat Pump System of a Building for District Heating/Cooling Purposes: Comparison Among Different Configurations
,”
Appl. Therm. Eng.
,
130
, pp.
1489
1506
.
37.
Jalaluddin
, and
Miyara
,
A.
,
2015
, “
Thermal Performance and Pressure Drop of Spiral-Tube Ground Heat Exchangers for Ground-Source Heat Pump
,”
Appl. Therm. Eng.
,
90
, pp.
630
637
.
38.
Retkowski
,
W.
,
Ziefle
,
G.
, and
Thöming
,
J.
,
2015
, “
Evaluation of Different Heat Extraction Strategies for Shallow Vertical Ground-Source Heat Pump Systems
,”
Appl. Energy
,
149
, pp.
259
271
.
39.
Jalaluddin
, and
Miyara
,
A.
,
2012
, “
Thermal Performance Investigation of Several Types of Vertical Ground Heat Exchangers With Different Operation Mode
,”
Appl. Therm. Eng.
,
33–34
, pp.
167
174
.
40.
Choi
,
J. M.
,
Park
,
Y.
, and
Kang
,
S. H.
,
2013
, “
Heating Performance Verification of a Ground Source Heat Pump System With U-Tube and Double Tube Type GLHEs
,”
Renewable Energy
,
54
, pp.
32
39
.
41.
Sivasakthivel
,
T.
,
Philippe
,
M.
,
Murugesan
,
K.
,
Verma
,
V.
, and
Hu
,
P.
,
2017
, “
Experimental Thermal Performance Analysis of Ground Heat Exchangers for Space Heating and Cooling Applications
,”
Renewable Energy
,
113
, pp.
1168
1181
.
42.
Zarrella
,
A.
,
Emmi
,
G.
, and
De Carli
,
M.
,
2017
, “
A Simulation-Based Analysis of Variable Flow Pumping in Ground Source Heat Pump Systems With Different Types of Borehole Heat Exchangers: A Case Study
,”
Energy Convers. Manage.
,
131
, pp.
135
150
.
43.
Chen
,
F.
,
Mao,
J.
,
Zhu
,
G.
,
Zhang
,
B.
,
Tian
,
Y.
,
Liao
,
D.
, and
Liu
,
Y.
,
2021
, “
Numerical Assessment on the Thermal Imbalance of Multiple Ground Heat Exchangers Connected in Parallel
,”
Geothermics
,
96
, p.
102191
.
44.
Pu
,
L.
,
Xu
,
L.
,
Qi
,
D.
, and
Li
,
Y.
,
2019
, “
A Novel Tree-Shaped Ground Heat Exchanger for GSHPs in Severely Cold Regions
,”
Appl. Therm. Eng.
,
146
, pp.
278
287
.
45.
Xu
,
L.
,
Pu
,
L.
,
Qi
,
D.
, and
Li
,
Y.
,
2019
, “
Influences of Structure Parameters on Performance of Tree-Shaped Ground Heat Exchanger
,”
Energy Procedia
,
158
, pp.
5954
5961
.
46.
Serageldin
,
A. A.
,
Radwan
,
A.
,
Katsura
,
T.
,
Sakata
,
Y.
,
Nagasaka
,
S.
, and
Nagano
,
K.
,
2021
, “
Parametric Analysis, Response Surface, Sensitivity Analysis, and Optimization of a Novel Spiral-Double Ground Heat Exchanger
,”
Energy Convers. Manag
,
240
, p.
114251
.
47.
Xia
,
L.
,
Ma
,
Z.
,
McLauchlan
,
C.
, and
Wang
,
S.
,
2017
, “
Experimental Investigation and Control Optimization of a Ground Source Heat Pump System
,”
Appl. Therm. Eng.
,
127
, pp.
70
80
.
48.
Qi
,
D.
,
Pu
,
L.
,
Ma
,
Z.
,
Xia
,
L.
, and
Li
,
Y.
,
2019
, “
Effects of Ground Heat Exchangers With Different Connection Configurations on the Heating Performance of GSHP Systems
,”
Geothermics
,
80
, pp.
20
30
.
49.
Kim
,
M.-J.
,
Lee
,
S.-R.
,
Yoon
,
S.
, and
Jeon
,
J.-S.
,
2018
, “
An Applicable Design Method for Horizontal Spiral-Coil-Type Ground Heat Exchangers
,”
Geothermics
,
72
, pp.
338
347
.
50.
Adamovsky
,
D.
,
Neuberger
,
P.
, and
Adamovsky
,
R.
,
2015
, “
Changes in Energy and Temperature in the Ground Mass With Horizontal Heat Exchangers—The Energy Source for Heat Pumps
,”
Energy Build.
,
92
, pp.
107
115
.
51.
Habibi
,
M.
,
Amadeh
,
A.
, and
Hakkaki-Fard
,
A.
,
2020
, “
A Numerical Study on Utilizing Horizontal Flat-Panel Ground Heat Exchangers in Ground-Coupled Heat Pumps
,”
Renewable Energy
,
147
, pp.
996
1010
.
52.
Zukowski
,
M.
, and
Topolanska
,
J.
,
2018
, “
Comparison of Thermal Performance Between Tube and Plate Ground-Air Heat Exchangers
,”
Renewable Energy
,
115
, pp.
697
710
.
53.
Amadeh
,
A.
,
Habibi
,
M.
, and
Hakkaki-Fard
,
A.
,
2020
, “
Numerical Simulation of a Ground-Coupled Heat Pump System with Vertical Plate Heat Exchangers: A Comprehensive Parametric Study
,”
Geothermics
,
88
, p.
101913
.
54.
Chong
,
C. S. A.
,
Gan
,
G.
,
Verhoef
,
A.
,
Garcia
,
R. G.
, and
Vidale
,
P. L.
,
2013
, “
Simulation of Thermal Performance of Horizontal Slinky-Loop Heat Exchangers for Ground Source Heat Pumps
,”
Appl. Energy
,
104
, pp.
603
610
.
55.
Xiong
,
Z.
,
Fisher
,
D. E.
, and
Spitler
,
J. D.
,
2015
, “
Development and Validation of a SlinkyTM Ground Heat Exchanger Model
,”
Appl. Energy
,
141
, pp.
57
69
.
56.
Sanaye
,
S.
, and
Niroomand
,
B.
,
2010
, “
Horizontal Ground Coupled Heat Pump: Thermal-Economic Modeling and Optimization
,”
Energy Convers. Manage.
,
51
(
12
), pp.
2600
2612
.
57.
Li
,
C.
,
Mao
,
J.
,
Zhang
,
H.
,
Xing
,
Z.
,
Li
,
Y.
, and
Zhou
,
J.
,
2017
, “
Numerical Simulation of Horizontal Spiral-Coil Ground Source Heat Pump System: Sensitivity Analysis and Operation Characteristics
,”
Appl. Therm. Eng.
,
110
, pp.
424
435
.
58.
Go
,
G.-H.
,
Lee
,
S.-R.
,
Yoon
,
S.
, and
Kim
,
M.-J.
,
2016
, “
Optimum Design of Horizontal Ground-Coupled Heat Pump Systems Using Spiral-Coil-Loop Heat Exchangers
,”
Appl. Energy
,
162
, pp.
330
345
.
59.
Jeon
,
J.-S.
, and
Lee
,
S.-R.
,
2017
, “
Suggestion of a Load Sharing Ratio for the Design of Spiral Coil-Type Horizontal Ground Heat Exchangers
,”
Energy Procedia
,
141
, pp.
292
298
.
60.
Asgari
,
B.
,
Habibi
,
M.
, and
Hakkaki-Fard
,
A.
,
2020
, “
Assessment and Comparison of Different Arrangements of Horizontal Ground Heat Exchangers for High Energy Required Applications
,”
Appl. Therm. Eng.
,
167
, p.
114770
.
61.
Habibi
,
M.
, and
Hakkaki-Fard
,
A.
,
2018
, “
Evaluation and Improvement of the Thermal Performance of Different Types of Horizontal Ground Heat Exchangers Based on Techno-Economic Analysis
,”
Energy Convers. Manage.
,
171
, pp.
1177
1192
.
62.
Noorollahi
,
Y.
,
Bigdelou
,
P.
,
Pourfayaz
,
F.
, and
Yousefi
,
H.
,
2016
, “
Numerical Modeling and Economic Analysis of a Ground Source Heat Pump for Supplying Energy for a Greenhouse in Alborz Province, Iran
,”
J. Cleaner Prod.
,
131
, pp.
145
154
.
63.
Jeon
,
J.-S.
,
Lee
,
S.-R.
, and
Kim
,
M.-J.
,
2018
, “
A Modified Mathematical Model for Spiral Coil-Type Horizontal Ground Heat Exchangers
,”
Energy
,
152
, pp.
732
743
.
64.
Kupiec
,
K.
,
Larwa
,
B.
, and
Gwadera
,
M.
,
2015
, “
Heat Transfer in Horizontal Ground Heat Exchangers
,”
Appl. Therm. Eng.
,
75
, pp.
270
276
.
65.
Kayaci
,
N.
, and
Demir
,
H.
,
2018
, “
Geothermics Numerical Modelling of Transient Soil Temperature Distribution for Horizontal Ground Heat Exchanger of Ground Source Heat Pump
,”
Geothermics
,
73
, pp.
33
47
.
66.
Hepburn
,
B. D. P.
,
Sedighi
,
M.
,
Thomas
,
H. R.
, and
Manju
,
2016
, “
Field-Scale Monitoring of a Horizontal Ground Source Heat System
,”
Geothermics
,
61
, pp.
86
103
.
67.
Wu
,
Y.
,
Gan
,
G.
,
Gonzalez
,
R. G.
,
Verhoef
,
A.
, and
Vidale
,
P. L.
,
2011
, “
Prediction of the Thermal Performance of Horizontal-Coupled Ground-Source Heat Exchangers
,”
Int. J. Low-Carbon Technol.
,
6
(
4
), pp.
261
269
.
68.
Hassanzadeh
,
R.
,
Darvishyadegari
,
M.
, and
Arman
,
S.
,
2018
, “
A New Idea for Improving the Horizontal Straight Ground Source Heat Exchangers Performance
,”
Sustain. Energy Technol. Assess.
,
25
, pp.
138
145
.
69.
Gan
,
G.
,
2018
, “
Dynamic Thermal Performance of Horizontal Ground Source Heat Pumps—The Impact of Coupled Heat and Moisture Transfer
,”
Energy
,
152
, pp.
877
887
.
70.
Han
,
C.
,
Ellett
,
K. M.
,
Naylor
,
S.
, and
Yu
,
X. B.
,
2017
, “
Influence of Local Geological Data on the Performance of Horizontal Ground-Coupled Heat Pump System Integrated With Building Thermal Loads
,”
Renewable Energy
,
113
, pp.
1046
1055
.
71.
Go
,
G. H.
,
Lee
,
S. R.
,
Nikhil
,
N. V.
, and
Yoon
,
S.
,
2015
, “
A New Performance Evaluation Algorithm for Horizontal GCHPs (Ground Coupled Heat Pump Systems) That Considers Rainfall Infiltration
,”
Energy
,
83
, pp.
766
777
.
72.
Sedaghat
,
A.
,
Habibi
,
M.
, and
Hakkaki-Fard
,
A.
,
2020
, “
A Novel Ground Thermal Recovery System for Horizontal Ground Heat Exchangers in a Hot Climate
,”
Energy Convers. Manage.
,
224
, p.
113350
.
73.
Dinh
,
B. H.
,
Go
,
G. H.
, and
Kim
,
Y. S.
,
2021
, “
Performance of a Horizontal Heat Exchanger for Ground Heat Pump System: Effects of Groundwater Level Drop With Soil–Water Thermal Characteristics
,”
Appl. Therm. Eng.
,
195
, p.
117203
.
74.
Demir
,
H.
,
Koyun
,
A.
, and
Temir
,
G.
,
2009
, “
Heat Transfer of Horizontal Parallel Pipe Ground Heat Exchanger and Experimental Verification
,”
Appl. Therm. Eng.
,
29
(
2–3
), pp.
224
233
.
75.
Rui
,
Y.
,
Garber
,
D.
, and
Yin
,
M.
,
2018
, “
Modelling Ground Source Heat Pump System by an Integrated Simulation Programme
,”
Appl. Therm. Eng.
,
134
, pp.
450
459
.
76.
Nam
,
Y.
, and
Chae
,
H. B.
,
2014
, “
Numerical Simulation for the Optimum Design of Ground Source Heat Pump System Using Building Foundation as Horizontal Heat Exchanger
,”
Energy
,
73
, pp.
933
942
.
77.
Wang
,
S.
,
Gao
,
J.
,
Zhang
,
X.
,
Wang
,
Y.
, and
Cai
,
X.
,
2021
, “
Experimental and Numerical Investigations on the Thermal Behavior of Ground Heat Exchanger in Stratified Soils Across Unsaturated and Saturated Layers
,”
Appl. Therm. Eng.
,
195
, p.
117163
.
78.
DiCarlo
,
A. A.
,
2021
, “
Novel Seasonal Enhancement of Shallow Ground Source Heat Pumps
,”
Appl. Therm. Eng.
,
186
, p.
116510
.
79.
Zhao
,
Q.
,
Chen
,
B.
, and
Liu
,
F.
,
2016
, “
Study on the Thermal Performance of Several Types of Energy Pile Ground Heat Exchangers: U-Shaped, W-Shaped and Spiral-Shaped
,”
Energy Build.
,
133
, pp.
335
344
.
80.
Moon
,
C.-E.
, and
Choi
,
J. M.
,
2015
, “
Heating Performance Characteristics of the Ground Source Heat Pump System With Energy-Piles and Energy-Slabs
,”
Energy
,
81
, pp.
27
32
.
81.
Zhang
,
W.
,
Yang
,
H.
,
Lu
,
L.
, and
Fang
,
Z.
,
2012
, “
Investigation on Heat Transfer Around Buried Coils of Pile Foundation Heat Exchangers for Ground-Coupled Heat Pump Applications
,”
Int. J. Heat Mass Transfer
,
55
(
21–22
), pp.
6023
6031
.
82.
Kayaci
,
N.
, and
Demir
,
H.
,
2020
, “
Comparative Performance Analysis of Building Foundation Ground Heat Exchanger
,”
Geothermics
,
83
, p.
101710
.
83.
Hamada
,
Y.
,
Saitoh
,
H.
,
Nakamura
,
M.
,
Kubota
,
H.
, and
Ochifuji
,
K.
,
2007
, “
Field Performance of an Energy Pile System for Space Heating
,”
Energy Build.
,
39
(
5
), pp.
517
524
.
84.
Wood
,
C. J.
,
Liu
,
H.
, and
Riffat
,
S. B.
,
2010
, “
An Investigation of the Heat Pump Performance and Ground Temperature of a Piled Foundation Heat Exchanger System for a Residential Building
,”
Energy
,
35
(
12
), pp.
4932
4940
.
85.
Fadejev
,
J.
,
Simson
,
R.
,
Kurnitski
,
J.
, and
Haghighat
,
F.
,
2017
, “
A Review on Energy Piles Design, Sizing and Modelling
,”
Energy
,
122
, pp.
390
407
.
86.
Bozis
,
D.
,
Papakostas
,
K.
, and
Kyriakis
,
N.
,
2011
, “
On the Evaluation of Design Parameters Effects on the Heat Transfer Efficiency of Energy Piles
,”
Energy Build.
,
43
(
4
), pp.
1020
1029
.
87.
Li
,
M.
, and
Lai
,
A. C. K.
,
2012
, “
New Temperature Response Functions (G Functions) for Pile and Borehole Ground Heat Exchangers Based on Composite-Medium Line-Source Theory
,”
Energy
,
38
(
1
), pp.
255
263
.
88.
Li
,
M.
, and
Lai
,
A. C. K.
,
2012
, “
Heat-Source Solutions to Heat Conduction in Anisotropic Media With Application to Pile and Borehole Ground Heat Exchangers
,”
Appl. Energy
,
96
, pp.
451
458
.
89.
Sutman
,
M.
,
Speranza
,
G.
,
Ferrari
,
A.
,
Larrey-Lassalle
,
P.
, and
Laloui
,
L.
,
2020
, “
Long-Term Performance and Life Cycle Assessment of Energy Piles in Three Different Climatic Conditions
,”
Renewable Energy
,
146
, pp.
1177
1191
.
90.
Laloui
,
L.
,
Nuth
,
M.
, and
Vulliet
,
L.
,
2006
, “
Experimental and Numerical Investigations of the Behaviour of a Heat Exchanger Pile
,”
Int. J. Numer. Anal. Methods Geomech.
,
30
(
8
), pp.
763
781
.
91.
Park
,
H.
,
Lee
,
S.-R.
,
Yoon
,
S.
, and
Choi
,
J.-C.
,
2013
, “
Evaluation of Thermal Response and Performance of PHC Energy Pile: Field Experiments and Numerical Simulation
,”
Appl. Energy
,
103
, pp.
12
24
.
92.
Lee
,
C. K.
, and
Lam
,
H. N.
,
2013
, “
A Simplified Model of Energy Pile for Ground-Source Heat Pump Systems
,”
Energy
,
55
, pp.
838
845
.
93.
Cekerevac
,
C.
, and
Laloui
,
L.
,
2004
, “
Experimental Study of Thermal Effects on the Mechanical Behaviour of a Clay
,”
Int. J. Numer. Anal. Methods Geomech.
,
28
(
3
), pp.
209
228
.
94.
Gao
,
J.
,
Zhang
,
X.
,
Liu
,
J.
,
Li
,
K.
, and
Yang
,
J.
,
2008
, “
Numerical and Experimental Assessment of Thermal Performance of Vertical Energy Piles: An Application
,”
Appl. Energy
,
85
(
10
), pp.
901
910
.
95.
Zarrella
,
A.
,
De Carli
,
M.
, and
Galgaro
,
A.
,
2013
, “
Thermal Performance of Two Types of Energy Foundation Pile: Helical Pipe and Triple U-Tube
,”
Appl. Therm. Eng.
,
61
(
2
), pp.
301
310
.
96.
Carotenuto
,
A.
,
Marotta
,
P.
,
Massarotti
,
N.
,
Mauro
,
A.
, and
Normino
,
G.
,
2017
, “
Energy Piles for Ground Source Heat Pump Applications: Comparison of Heat Transfer Performance for Different Design and Operating Parameters
,”
Appl. Therm. Eng.
,
124
, pp.
1492
1504
.
97.
Zhang
,
W.
,
Yang
,
H.
,
Lu
,
L.
,
Cui
,
P.
, and
Fang
,
Z.
,
2014
, “
The Research on Ring-Coil Heat Transfer Models of Pile Foundation Ground Heat Exchangers in the Case of Groundwater Seepage
,”
Energy Build.
,
71
, pp.
115
128
.
98.
You
,
T.
, and
Yang
,
H.
,
2020
, “
Feasibility of Ground Source Heat Pump Using Spiral Coil Energy Piles With Seepage for Hotels in Cold Regions
,”
Energy Convers. Manage.
,
205
, p.
112466
. .
99.
Boban
,
L.
,
Miše
,
D.
,
Herceg
,
S.
, and
Soldo
,
V.
,
2021
, “
Application and Design Aspects of Ground Heat Exchangers
,”
Energies
,
14
(
8
), p.
2134
.
100.
Narei
,
H.
,
Ghasempour
,
R.
, and
Noorollahi
,
Y.
,
2016
, “
The Effect of Employing Nanofluid on Reducing the Bore Length of a Vertical Ground-Source Heat Pump
,”
Energy Convers. Manage.
,
123
, pp.
581
591
.
101.
Rezaei-Bazkiaei
,
A.
,
Dehghan-Niri
,
E.
,
Kolahdouz
,
E. M.
,
Weber
,
A. S.
, and
Dargush
,
G. F.
,
2013
, “
A Passive Design Strategy for a Horizontal Ground Source Heat Pump Pipe Operation Optimization With a Non-Homogeneous Soil Profile
,”
Energy Build.
,
61
, pp.
39
50
.
102.
Diglio
,
G.
,
Roselli
,
C.
,
Sasso
,
M.
, and
Jawali Channabasappa
,
U.
,
2018
, “
Borehole Heat Exchanger With Nanofluids as Heat Carrier
,”
Geothermics
,
72
, pp.
112
123
.
103.
Aikins
,
K. A.
, and
Choi
,
J. M.
,
2012
, “
Current Status of the Performance of GSHP (Ground Source Heat Pump) Units in the Republic of Korea
,”
Energy
,
47
(
1
), pp.
77
82
.
104.
Pu
,
L.
,
Qi
,
D.
,
Li
,
K.
,
Tan
,
H.
, and
Li
,
Y.
,
2015
, “
Simulation Study on the Thermal Performance of Vertical U-Tube Heat Exchangers for Ground Source Heat Pump System
,”
Appl. Therm. Eng.
,
79
, pp.
202
213
.
105.
Guan
,
Y.
,
Zhao
,
X.
,
Wang
,
G.
,
Dai
,
J.
, and
Zhang
,
H.
,
2017
, “
3D Dynamic Numerical Programming and Calculation of Vertical Buried Tube Heat Exchanger Performance of Ground-Source Heat Pumps Under Coupled Heat Transfer Inside and Outside of Tube
,”
Energy Build.
,
139
, pp.
186
196
.
106.
Zhou
,
H.
,
Lv
,
J.
, and
Li
,
T.
,
2016
, “
Applicability of the Pipe Structure and Flow Velocity of Vertical Ground Heat Exchanger for Ground Source Heat Pump
,”
Energy Build.
,
117
, pp.
109
119
.
107.
Kapicioglu
,
A.
,
2021
, “
Energy and Exergy Analysis of a Ground Source Heat Pump System With a Slinky Ground Heat Exchanger Supported by Nanofluid
,”
J. Therm. Anal. Calorim.
108.
Kapıcıoğlu
,
A.
, and
Esen
,
H.
,
2020
, “
Experimental Investigation on Using Al2O3/Ethylene Glycol-Water Nano-Fluid in Different Types of Horizontal Ground Heat Exchangers
,”
Appl. Therm. Eng.
,
165
, p.
114559
.
109.
Yoon
,
S.
,
Lee
,
S. R.
,
Kim
,
M. J.
,
Kim
,
W. J.
,
Kim
,
G. Y.
, and
Kim
,
K.
,
2016
, “
Evaluation of Stainless Steel Pipe Performance as a Ground Heat Exchanger in Ground-Source Heat-Pump System
,”
Energy
,
113
, pp.
328
337
.
110.
Cao
,
S. J.
,
Kong
,
X. R.
,
Deng
,
Y.
,
Zhang
,
W.
,
Yang
,
L.
, and
Ye
,
Z. P.
,
2017
, “
Investigation on Thermal Performance of Steel Heat Exchanger for Ground Source Heat Pump Systems Using Full-Scale Experiments and Numerical Simulations
,”
Appl. Therm. Eng.
,
115
, pp.
91
98
.
111.
Bayomy
,
A. M.
,
Wang
,
J.
, and
Dworkin
,
S. B.
,
2021
, “
Numerical and Analytical Study of a Geo-Exchange Borehole Using Conventional Grout and Bentonite-Based Backfilling Material
,”
Int. J. Energy Res.
,
45
(
9
), pp.
13545
13562
.
112.
Genchi
,
Y.
,
Kikegawa
,
Y.
, and
Inaba
,
A.
,
2002
, “
CO2 Payback-Time Assessment of a Regional-Scale Heating and Cooling System Using a Ground Source Heat-Pump in a High Energy-Consumption Area in Tokyo
,”
Appl. Energy
,
71
(
3
), pp.
147
160
.
113.
Erol
,
S.
, and
François
,
B.
,
2014
, “
Efficiency of Various Grouting Materials for Borehole Heat Exchangers
,”
Appl. Therm. Eng.
,
70
(
1
), pp.
788
799
.
114.
Rad
,
F. M.
, and
Fung
,
A. S.
,
2016
, “
Solar Community Heating and Cooling System With Borehole Thermal Energy Storage—Review of Systems
,”
Renewable Sustainable Energy Rev.
,
60
, pp.
1550
1561
.
115.
Qi
,
D.
,
Pu
,
L.
,
Sun
,
F.
, and
Li
,
Y.
,
2016
, “
Numerical Investigation on Thermal Performance of Ground Heat Exchangers Using Phase Change Materials as Grout for Ground Source Heat Pump System
,”
Appl. Therm. Eng.
,
106
, pp.
1023
1032
.
116.
Chen
,
F.
,
Mao
,
J.
,
Chen
,
S.
,
Li
,
C.
,
Hou
,
P.
, and
Liao
,
L.
,
2018
, “
Efficiency Analysis of Utilizing Phase Change Materials as Grout for a Vertical U-Tube Heat Exchanger Coupled Ground Source Heat Pump System
,”
Appl. Therm. Eng.
,
130
, pp.
698
709
.
117.
Liu
,
L.
,
Cai
,
G.
,
Liu
,
X.
,
Liu
,
S.
, and
Puppala
,
A. J.
,
2019
, “
Evaluation of Thermal-Mechanical Properties of Quartz Sand–Bentonite–Carbon Fiber Mixtures as the Borehole Backfilling Material in Ground Source Heat Pump
,”
Energy Build.
,
202
, p.
109407
.
118.
Zhai
,
X. Q.
,
Cheng
,
X. W.
, and
Wang
,
R. Z.
,
2017
, “
Heating and Cooling Performance of a Minitype Ground Source Heat Pump System
,”
Appl. Therm. Eng.
,
111
, pp.
1366
1370
.
119.
Wang
,
Z.
,
Wang
,
F.
,
Liu
,
J.
,
Ma
,
Z.
,
Han
,
E.
, and
Song
,
M.
,
2017
, “
Field Test and Numerical Investigation on the Heat Transfer Characteristics and Optimal Design of the Heat Exchangers of a Deep Borehole Ground Source Heat Pump System
,”
Energy Convers. Manage.
,
153
, pp.
603
615
.
120.
Le Nian
,
Y.
,
Cheng
,
W. L.
,
Yang
,
X. Y.
, and
Xie
,
K.
,
2019
, “
Simulation of a Novel Deep Ground Source Heat Pump System Using Abandoned Oil Wells With Coaxial BHE
,”
Int. J. Heat Mass Transfer
,
137
, pp.
400
412
.
121.
Lazzari
,
S.
,
Priarone
,
A.
, and
Zanchini
,
E.
,
2010
, “
Long-Term Performance of BHE (Borehole Heat Exchanger) Fields With Negligible Groundwater Movement
,”
Energy
,
35
(
12
), pp.
4966
4974
.
122.
Ma
,
J.
,
Jiang
,
Q.
,
Zhang
,
Q.
,
Xie
,
Y.
,
Wang
,
Y.
, and
Yi
,
F.
,
2021
, “
Effect of Groundwater Forced Seepage on Heat Transfer Characteristics of Borehole Heat Exchangers
,”
Geotherm. Energy
,
9
(
1
), pp.
1
23
.
123.
Molina-Giraldo
,
N.
,
Blum
,
P.
,
Zhu
,
K.
,
Bayer
,
P.
, and
Fang
,
Z.
,
2011
, “
A Moving Finite Line Source Model to Simulate Borehole Heat Exchangers With Groundwater Advection
,”
Int. J. Therm. Sci.
,
50
(
12
), pp.
2506
2513
.
124.
Michopoulos
,
A.
,
Zachariadis
,
T.
, and
Kyriakis
,
N.
,
2013
, “
Operation Characteristics and Experience of a Ground Source Heat Pump System With a Vertical Ground Heat Exchanger
,”
Energy
,
51
, pp.
349
357
.
125.
Luo
,
J.
,
Rohn
,
J.
,
Bayer
,
M.
, and
Priess
,
A.
,
2013
, “
Modeling and Experiments on Energy Loss in Horizontal Connecting Pipe of Vertical Ground Source Heat Pump System
,”
Appl. Therm. Eng.
,
61
(
2
), pp.
55
64
.
126.
Marcotte
,
D.
, and
Pasquier
,
P.
,
2009
, “
The Effect of Borehole Inclination on Fluid and Ground Temperature for GLHE Systems
,”
Geothermics
,
38
(
4
), pp.
392
398
.
127.
Yang
,
H.
,
Cui
,
P.
, and
Fang
,
Z.
,
2010
, “
Vertical-Borehole Ground-Coupled Heat Pumps: A Review of Models and Systems
,”
Appl. Energy
,
87
(
1
), pp.
16
27
.
128.
Ahmadi
,
M. H.
,
Ahmadi
,
M. A.
,
Sadaghiani
,
M. S.
,
Ghazvini
,
M.
,
Shahriar
,
S.
, and
Alhuyi Nazari
,
M.
,
2018
, “
Ground Source Heat Pump Carbon Emissions and Ground-Source Heat Pump Systems for Heating and Cooling of Buildings: A Review
,”
Environ. Prog. Sustainable Energy
,
37
(
4
), pp.
1241
1265
.
129.
Koohi-Fayegh
,
S.
, and
Rosen
,
M. A.
,
2014
, “
An Analytical Approach to Evaluating the Effect of Thermal Interaction of Geothermal Heat Exchangers on Ground Heat Pump Efficiency
,”
Energy Convers. Manage.
,
78
, pp.
184
192
.
130.
Al-Dabbas
,
M. A. A.
, and
Al-Rousan
,
A. A.
,
2013
, “
Energy Extracted From Underground Rock Area by Using a Horizontal Closed Loop System in Mutah University/Jordan
,”
Energy Convers. Manage.
,
65
, pp.
744
750
.
131.
İnallı
,
M.
, and
Esen
,
H.
,
2004
, “
Experimental Thermal Performance Evaluation of a Horizontal Ground-Source Heat Pump System
,”
Appl. Therm. Eng.
,
24
(
14–15
), pp.
2219
2232
.
132.
İnallı
,
M.
, and
Esen
,
H.
,
2005
, “
Seasonal Cooling Performance of a Ground-Coupled Heat Pump System in a Hot and Arid Climate
,”
Renewable Energy
,
30
(
9
), pp.
1411
1424
.
133.
Wang
,
H.
,
Qi
,
C.
,
Du
,
H.
, and
Gu
,
J.
,
2009
, “
Thermal Performance of Borehole Heat Exchanger Under Groundwater Flow: A Case Study From Baoding
,”
Energy Build.
,
41
(
12
), pp.
1368
1373
.
134.
Zanchini
,
E.
,
Lazzari
,
S.
, and
Priarone
,
A.
,
2012
, “
Long-Term Performance of Large Borehole Heat Exchanger Fields With Unbalanced Seasonal Loads and Groundwater Flow
,”
Energy
,
38
(
1
), pp.
66
77
.
135.
Gustafsson
,
A.-M.
,
Westerlund
,
L.
, and
Hellström
,
G.
,
2010
, “
CFD-Modelling of Natural Convection in a Groundwater-Filled Borehole Heat Exchanger
,”
Appl. Therm. Eng.
,
30
(
6–7
), pp.
683
691
.
136.
Li
,
B.
,
Han
,
Z.
,
Hu
,
H.
, and
Bai
,
C.
,
2020
, “
Study on the Effect of Groundwater Flow on the Identification of Thermal Properties of Soils
,”
Renewable Energy
,
147
, pp.
2688
2695
.
137.
Li
,
B.
,
Han
,
Z.
,
Bai
,
C.
, and
Hu
,
H.
,
2019
, “
The Influence of Soil Thermal Properties on the Operation Performance on Ground Source Heat Pump System
,”
Renewable Energy
,
141
, pp.
903
913
.
138.
García-Gil
,
A.
,
Vázquez-Suñe
,
E.
,
Alcaraz
,
M. M.
,
Juan
,
A. S.
,
Sánchez-Navarro
,
J. Á.
,
Montlleó
,
M.
,
Rodríguez
,
G.
, and
Lao
,
J.
,
2015
, “
GIS-Supported Mapping of Low-Temperature Geothermal Potential Taking Groundwater Flow Into Account
,”
Renewable Energy
,
77
, pp.
268
278
.
139.
Viesi
,
D.
,
Galgaro
,
A.
,
Visintainer
,
P.
, and
Crema
,
L.
,
2018
, “
GIS-Supported Evaluation and Mapping of the Geo-Exchange Potential for Vertical Closed-Loop Systems in an Alpine Valley, the Case Study of Adige Valley (Italy)
,”
Geothermics
,
71
, pp.
70
87
.
140.
Zhang
,
W.
,
Yang
,
H.
,
Guo
,
X.
,
Yu
,
M.
, and
Fang
,
Z.
,
2016
, “
Investigation on Groundwater Velocity Based on the Finite Line Heat Source Seepage Model
,”
Int. J. Heat Mass Transfer
,
99
, pp.
391
401
.
141.
Raymond
,
J.
,
Therrien
,
R.
,
Gosselin
,
L.
, and
Lefebvre
,
R.
,
2011
, “
Numerical Analysis of Thermal Response Tests With a Groundwater Flow and Heat Transfer Model
,”
Renewable Energy
,
36
(
1
), pp.
315
324
.
142.
Hecht-Méndez
,
J.
,
de Paly
,
M.
,
Beck
,
M.
, and
Bayer
,
P.
,
2013
, “
Optimization of Energy Extraction for Vertical Closed-Loop Geothermal Systems Considering Groundwater Flow
,”
Energy Convers. Manage.
,
66
, pp.
1
10
.
143.
Fujii
,
H.
,
Itoi
,
R.
,
Fujii
,
J.
, and
Uchida
,
Y.
,
2005
, “
Optimizing the Design of Large-Scale Ground-Coupled Heat Pump Systems Using Groundwater and Heat Transport Modeling
,”
Geothermics
,
34
(
3
), pp.
347
364
.
144.
Fan
,
R.
,
Jiang
,
Y.
,
Yao
,
Y.
,
Shiming
,
D.
, and
Ma
,
Z.
,
2007
, “
A Study on the Performance of a Geothermal Heat Exchanger Under Coupled Heat Conduction and Groundwater Advection
,”
Energy
,
32
(
11
), pp.
2199
2209
.
145.
Chiasson
,
A.
,
Rees
,
S.
, and
Spitler
,
J.
,
2000
, “
A Preliminary Assessment of the Effects of Groundwater Flow on Closed-Loop Ground Source Heat Pump Systems
,”
ASHRAE Trans.
,
106
(
1
), pp.
380
393
.
146.
Daemi
,
N.
, and
Krol
,
M. M.
,
2019
, “
Impact of Building Thermal Load on the Developed Thermal Plumes of a Multi-Borehole GSHP System in Different Canadian Climates
,”
Renewable Energy
,
134
, pp.
550
557
.
147.
Attard
,
G.
,
Bayer
,
P.
,
Rossier
,
Y.
,
Blum
,
P.
, and
Eisenlohr
,
L.
,
2020
, “
A Novel Concept for Managing Thermal Interference Between Geothermal Systems in Cities
,”
Renewable Energy
,
145
, pp.
914
924
.
148.
García-Gil
,
A.
,
Vázquez-Suñe
,
E.
,
Schneider
,
E. G.
,
Sánchez-Navarro
,
, and
Mateo-Lázaro
,
J.
,
2015
, “
Relaxation Factor for Geothermal Use Development—Criteria for a More Fair and Sustainable Geothermal Use of Shallow Energy Resources
,”
Geothermics
,
56
, pp.
128
137
.
149.
Li
,
S.
,
Dong
,
K.
,
Wang
,
J.
, and
Zhang
,
X.
,
2015
, “
Long Term Coupled Simulation for Ground Source Heat Pump and Underground Heat Exchangers
,”
Energy Build.
,
106
, pp.
13
22
.
150.
Al-Ameen
,
Y.
,
Ianakiev
,
A.
, and
Evans
,
R.
,
2017
, “
Thermal Performance of a Solar Assisted Horizontal Ground Heat Exchanger
,”
Energy
,
140
, pp.
1216
1227
.
151.
Cui
,
Y.
, and
Zhu
,
J.
,
2018
, “
Year-Round Performance Assessment of a Ground Source Heat Pump With Multiple Energy Piles
,”
Energy Build.
,
158
, pp.
509
524
.
152.
Fong
,
K. F.
,
Lee
,
C. K.
, and
Zhao
,
T. F.
,
2017
, “
Effective Design and Operation Strategy of Renewable Cooling and Heating System for Building Application in Hot-Humid Climate
,”
Sol. Energy
,
143
, pp.
1
9
.
153.
Dalla Santa
,
G.
,
Galgaro
,
A.
,
Sassi
,
R.
,
Cultrera
,
M.
,
Scotton
,
P.
,
Mueller
,
J.
,
Bertermann
,
D.
,
Mendrinos
,
D.
,
Pasquali
,
R.
,
Perego
,
R.
,
Pera
,
S.
,
Di Sipio
,
E.
,
Cassiani
,
G.
,
De Carli
,
M.
, and
Bernardi
,
A.
,
2020
, “
An Updated Ground Thermal Properties Database for GSHP Applications
,”
Geothermics
,
85
, p.
101758
.
154.
Shang
,
Y.
,
Li
,
S.
, and
Li
,
H.
,
2011
, “
Analysis of Geo-Temperature Recovery Under Intermittent Operation of Ground-Source Heat Pump
,”
Energy Build.
,
43
(
4
), pp.
935
943
.
155.
Vienken
,
T.
,
Schelenz
,
S.
,
Rink
,
K.
, and
Dietrich
,
P.
,
2015
, “
Sustainable Intensive Thermal Use of the Shallow Subsurface—A Critical View on the Status Quo
,”
Groundwater
,
53
(
3
), pp.
356
361
.
156.
Schibuola
,
L.
,
Tambani
,
C.
,
Zarrella
,
A.
, and
Scarpa
,
M.
,
2013
, “
Ground Source Heat Pump Performance in Case of High Humidity Soil and Yearly Balanced Heat Transfer
,”
Energy Convers. Manage.
,
76
, pp.
956
970
.
157.
Shang
,
Y.
,
Dong
,
M.
,
Li
,
S.
, and
Mu
,
L.
,
2017
, “
Analysis of a Ground Source Heat Pump System Using an Unsaturated 3-Dimensional Model
,”
Appl. Therm. Eng.
,
112
, pp.
1083
1094
.
158.
Yu
,
X.
,
Wang
,
R. Z.
, and
Zhai
,
X. Q.
,
2011
, “
Year Round Experimental Study on a Constant Temperature and Humidity Air-Conditioning System Driven by Ground Source Heat Pump
,”
Energy
,
36
(
2
), pp.
1309
1318
.
159.
Wang
,
Y.
,
Liu
,
Y.
,
Cui
,
Y.
,
Guo
,
W.
, and
Lv
,
J.
,
2018
, “
Numerical Simulation of Soil Freezing and Associated Pipe Deformation in Ground Heat Exchangers
,”
Geothermics
,
74
, pp.
112
120
.
160.
Zheng
,
T.
,
Shao
,
H.
,
Schelenz
,
S.
,
Hein
,
P.
,
Vienken
,
T.
,
Pang
,
Z.
,
Kolditz
,
O.
, and
Nagel
,
T.
,
2016
, “
Efficiency and Economic Analysis of Utilizing Latent Heat From Groundwater Freezing in the Context of Borehole Heat Exchanger Coupled Ground Source Heat Pump Systems
,”
Appl. Therm. Eng.
,
105
, pp.
314
326
.
161.
Kimiaei
,
S.
, and
Salmanzadeh
,
M.
,
2020
, “
Effects of Saturated Soil on the Lengths of a Double U-Tube Borehole With Two Independent Circuits, a Parallel Double U-Tube Borehole and on the Power Consumption of a GSHP
,”
Renewable Energy
,
145
, pp.
202
214
.
162.
Allaerts
,
K.
,
Al Koussa
,
J.
,
Desmedt
,
J.
, and
Salenbien
,
R.
,
2017
, “
Improving the Energy Efficiency of Ground-Source Heat Pump Systems in Heating Dominated School Buildings: A Case Study in Belgium
,”
Energy Build.
,
138
, pp.
559
568
.
163.
Kuzmic
,
N.
,
Law
,
Y. L. E.
, and
Dworkin
,
S. B.
,
2016
, “
Numerical Heat Transfer Comparison Study of Hybrid and Non-Hybrid Ground Source Heat Pump Systems
,”
Appl. Energy
,
165
, pp.
919
929
.
164.
Capozza
,
A.
,
Zarrella
,
A.
, and
De Carli
,
M.
,
2015
, “
Long-Term Analysis of Two GSHP Systems Using Validated Numerical Models and Proposals to Optimize the Operating Parameters
,”
Energy Build.
,
93
, pp.
50
64
.
165.
Wu
,
W.
,
Wang
,
B.
,
You
,
T.
,
Shi
,
W.
, and
Li
,
X.
,
2013
, “
A Potential Solution for Thermal Imbalance of Ground Source Heat Pump Systems in Cold Regions: Ground Source Absorption Heat Pump
,”
Renewable Energy
,
59
, pp.
39
48
.
166.
Hou
,
G.
,
Taherian
,
H.
, and
Li
,
L.
,
2020
, “
A Predictive TRNSYS Model for Long-Term Operation of a Hybrid Ground Source Heat Pump System With Innovative Horizontal Buried Pipe Type
,”
Renewable Energy
,
151
, pp.
1046
1054
.
167.
Allaerts
,
K.
,
Coomans
,
M.
, and
Salenbien
,
R.
,
2015
, “
Hybrid Ground-Source Heat Pump System With Active Air Source Regeneration
,”
Energy Convers. Manage.
,
90
, pp.
230
237
.
168.
Mokhtar
,
M.
,
Stables
,
M.
,
Liu
,
X.
, and
Howe
,
J.
,
2013
, “
Intelligent Multi-Agent System for Building Heat Distribution Control With Combined Gas Boilers and Ground Source Heat Pump
,”
Energy Build.
,
62
, pp.
615
626
.
169.
Lee
,
C. K.
,
2011
, “
Effects of Multiple Ground Layers on Thermal Response Test Analysis and Ground-Source Heat Pump Simulation
,”
Appl. Energy
,
88
(
12
), pp.
4405
4410
.
170.
Kurevija
,
T.
,
Vulin
,
D.
, and
Krapec
,
V.
,
2012
, “
Effect of Borehole Array Geometry and Thermal Interferences on Geothermal Heat Pump System
,”
Energy Convers. Manage.
,
60
, pp.
134
142
.
171.
Spitler
,
J. D.
,
Witte
,
H. J. L.
, and
van Gelder
,
G. J.
,
2002
, “
In Situ Measurement of Ground Thermal Conductivity: The Dutch Perspective
,”
ASHRAE Trans.
,
108
(
1
), pp.
1
21
.
172.
Luo
,
J.
,
Rohn
,
J.
,
Xiang
,
W.
,
Bertermann
,
D.
, and
Blum
,
P.
,
2016
, “
A Review of Ground Investigations for Ground Source Heat Pump (GSHP) Systems
,”
Energy Build
,
117
, pp.
160
175
.
173.
Witte
,
H. J. L.
,
2013
, “
Error Analysis of Thermal Response Tests
,”
Appl. Energy
,
109
, pp.
302
311
.
174.
Spitler
,
J. D.
, and
Gehlin
,
S. E. A.
,
2015
, “
Thermal Response Testing for Ground Source Heat Pump Systems—An Historical Review
,”
Renewable Sustainable Energy Rev.
,
50
, pp.
1125
1137
.
175.
Dehghan B
,
B.
,
2018
, “
Thermal Conductivity Determination of Ground by New Modified Two Dimensional Analytical Models: Study Cases
,”
Renewable Energy
,
118
, pp.
393
401
.
176.
Shim
,
B. O.
, and
Park
,
C.-H.
,
2013
, “
Ground Thermal Conductivity for (Ground Source Heat Pumps) GSHPs in Korea
,”
Energy
,
56
, pp.
167
174
.
177.
Lim
,
K.
,
Lee
,
S.
, and
Lee
,
C.
,
2007
, “
An Experimental Study on the Thermal Performance of Ground Heat Exchanger
,”
Exp. Therm. Fluid Sci.
,
31
(
8
), pp.
985
990
.
178.
Wan
,
R.
,
Kong
,
D.
,
Kang
,
J.
,
Yin
,
T.
,
Ning
,
J.
, and
Ma
,
J.
,
2018
, “
The Experimental Study on Thermal Conductivity of Backfill Material of Ground Source Heat Pump Based on Iron Tailings
,”
Energy Build.
,
174
, pp.
1
12
.
179.
Lee
,
J. Y.
, and
Hwang
,
S. N.
,
2008
, “
A High-Gain Boost Converter Using Voltage-Stacking Cell
,”
Trans. Korean Inst. Electr. Eng.
,
57
(
6
), pp.
982
984
.
180.
Fujii
,
H.
,
Okubo
,
H.
,
Nishi
,
K.
,
Itoi
,
R.
,
Ohyama
,
K.
, and
Shibata
,
K.
,
2009
, “
An Improved Thermal Response Test for U-Tube Ground Heat Exchanger Based on Optical Fiber Thermometers
,”
Geothermics
,
38
(
4
), pp.
399
406
.
181.
Morais
,
T. D. S. O.
,
Tsuha
,
C. D. H. C.
,
Neto
,
L. A. B.
, and
Singh
,
R. M.
,
2020
, “
Effects of Seasonal Variations on the Thermal Response of Energy Piles in an Unsaturated Brazilian Tropical Soil
,”
Energy Build.
,
216
, p.
109971
.
182.
Yu
,
X.
,
Zhang
,
Y.
,
Deng
,
N.
,
Ma
,
H.
, and
Dong
,
S.
,
2016
, “
Thermal Response Test for Ground Source Heat Pump Based on Constant Temperature and Heat-Flux Methods
,”
Appl. Therm. Eng.
,
93
, pp.
678
682
.
183.
Jun
,
L.
,
Xu
,
Z.
,
Jun
,
G.
, and
Jie
,
Y.
,
2009
, “
Evaluation of Heat Exchange Rate of GHE in Geothermal Heat Pump Systems
,”
Renewable Energy
,
34
(
12
), pp.
2898
2904
.
184.
Bernier
,
M. A.
,
2001
, “
Ground-Coupled Heat Pump System Simulation
,”
ASHRAE Trans.
,
Part 107
, pp.
605
616
.
185.
Beier
,
R. A.
,
Acuña
,
J.
,
Mogensen
,
P.
, and
Palm
,
B.
,
2014
, “
Transient Heat Transfer in a Coaxial Borehole Heat Exchanger
,”
Geothermics
,
51
, pp.
470
482
.
186.
Lamarche
,
L.
, and
Beauchamp
,
B.
,
2007
, “
A New Contribution to the Finite Line-Source Model for Geothermal Boreholes
,”
Energy Build.
,
39
(
2
), pp.
188
198
.
187.
Lamarche
,
L.
,
2013
, “
Short-Term Behavior of Classical Analytic Solutions for the Design of Ground-Source Heat Pumps
,”
Renewable Energy
,
57
, pp.
171
180
.
188.
Zeng
,
H. Y.
,
Diao
,
N. R.
, and
Fang
,
Z. H.
,
2002
, “
A Finite Line-Source Model for Boreholes in Geothermal Heat Exchangers
,”
Heat Transf.-Asian Res.
,
31
(
7
), pp.
558
567
.
189.
Bandos
,
T. V.
,
Montero
,
Á.
,
Fernández
,
E.
,
Santander
,
J. L. G.
,
Isidro
,
J. M.
,
Pérez
,
J.
,
de Córdoba
,
P. J. F.
, and
Urchueguía
,
J. F.
,
2009
, “
Finite Line-Source Model for Borehole Heat Exchangers: Effect of Vertical Temperature Variations
,”
Geothermics
,
38
(
2
), pp.
263
270
.
190.
Abdelaziz
,
S. L.
,
Ozudogru
,
T. Y.
,
Olgun
,
C. G.
, and
Martin
,
J. R.
,
2014
, “
Multilayer Finite Line Source Model for Vertical Heat Exchangers
,”
Geothermics
,
51
, pp.
406
416
.
191.
Hu
,
J.
,
2017
, “
An Improved Analytical Model for Vertical Borehole Ground Heat Exchanger With Multiple-Layer Substrates and Groundwater Flow
,”
Appl. Energy
,
202
, pp.
537
549
.
192.
Yu
,
X.
,
Zhang
,
Y.
,
Deng
,
N.
,
Wang
,
J.
,
Zhang
,
D.
, and
Wang
,
J.
,
2013
, “
Thermal Response Test and Numerical Analysis Based on Two Models for Ground-Source Heat Pump System
,”
Energy Build.
,
66
, pp.
657
666
.
193.
Wang
,
H.
,
Qi
,
C.
,
Du
,
H.
, and
Gu
,
J.
,
2010
, “
Improved Method and Case Study of Thermal Response Test for Borehole Heat Exchangers of Ground Source Heat Pump System
,”
Renewable Energy
,
35
(
3
), pp.
727
733
.
194.
Philippe
,
M.
,
Bernier
,
M.
, and
Marchio
,
D.
,
2009
, “
Validity Ranges of Three Analytical Solutions to Heat Transfer in the Vicinity of Single Boreholes
,”
Geothermics
,
38
(
4
), pp.
407
413
.
195.
Cui
,
Y.
,
Zhu
,
J.
,
Twaha
,
S.
, and
Riffat
,
S.
,
2018
, “
A Comprehensive Review on 2D and 3D Models of Vertical Ground Heat Exchangers
,”
Renewable Sustainable Energy Rev.
,
94
, pp.
84
114
.
196.
Yang
,
Y.
, and
Li
,
M.
,
2014
, “
Short-Time Performance of Composite-Medium Line-Source Model for Predicting Responses of Ground Heat Exchangers With Single U-Shaped Tube
,”
Int. J. Therm. Sci.
,
82
, pp.
130
137
.
197.
De Carli
,
M.
,
Tonon
,
M.
,
Zarrella
,
A.
, and
Zecchin
,
R.
,
2010
, “
A Computational Capacity Resistance Model (CaRM) for Vertical Ground-Coupled Heat Exchangers
,”
Renewable Energy
,
35
(
7
), pp.
1537
1550
.
198.
Zarrella
,
A.
,
Scarpa
,
M.
, and
De Carli
,
M.
,
2011
, “
Short Time Step Analysis of Vertical Ground-Coupled Heat Exchangers: The Approach of CaRM
,”
Renewable Energy
,
36
(
9
), pp.
2357
2367
.
199.
Belzile
,
P.
,
Lamarche
,
L.
, and
Rousse
,
D. R.
,
2016
, “
Semi-Analytical Model for Geothermal Borefields With Independent Inlet Conditions
,”
Geothermics
,
60
, pp.
144
155
.
200.
Dawoud
,
B.
,
Amer
,
E.
, and
Gross
,
D.
,
2007
, “
Experimental Investigation of an Adsorptive Thermal Energy Storage
,”
Int. J. Energy Res.
,
31
(
2
), pp.
135
147
.
201.
Pasquier
,
P.
, and
Marcotte
,
D.
,
2014
, “
Joint Use of Quasi-3D Response Model and Spectral Method to Simulate Borehole Heat Exchanger
,”
Geothermics
,
51
, pp.
281
299
.
202.
Oppelt
,
T.
,
Riehl
,
I.
, and
Gross
,
U.
,
2010
, “
Modelling of the Borehole Filling of Double U-Pipe Heat Exchangers
,”
Geothermics
,
39
(
3
), pp.
270
276
.
203.
Javed
,
S.
, and
Claesson
,
J.
,
2011
, “
New Analytical and Numerical Solutions for the Short-Term Analysis of Vertical Ground Heat Exchangers
,”
ASHRAE Trans.
,
117
(
PART 1
), pp.
3
12
.
204.
Monzó
,
P.
,
Puttige
,
A. R.
,
Acuña
,
J.
,
Mogensen
,
P.
,
Cazorla
,
A.
,
Rodriguez
,
J.
,
Montagud
,
C.
, and
Cerdeira
,
F.
,
2018
, “
Numerical Modeling of Ground Thermal Response With Borehole Heat Exchangers Connected in Parallel
,”
Energy Build.
,
172
, pp.
371
384
.
205.
Sutton
,
M. G.
,
Nutter
,
D. W.
, and
Couvillion
,
R. J.
,
2003
, “
A Ground Resistance for Vertical Bore Heat Exchangers With Groundwater Flow
,”
ASME J. Energy Resour. Technol.
,
125
(
3
), pp.
183
189
.
206.
Wagner
,
V.
,
Blum
,
P.
,
Kübert
,
M.
, and
Bayer
,
P.
,
2013
, “
Analytical Approach to Groundwater-Influenced Thermal Response Tests of Grouted Borehole Heat Exchangers
,”
Geothermics
,
46
, pp.
22
31
.
207.
Fisher
,
D. E.
,
Rees
,
S.
,
Padhmanabhan
,
S. K.
, and
Murugappan
,
A.
,
2006
, “
Implementation and Validation of Ground-Source Heat Pump System Models in an Integrated Building and System Simulation Environment
,”
HVAC&R Res.
,
12
, pp.
693
710
.
208.
Lazzarotto
,
A.
, and
Björk
,
F.
,
2016
, “
A Methodology for the Calculation of Response Functions for Geothermal Fields With Arbitrarily Oriented Boreholes—Part 2
,”
Renewable Energy
,
86
, pp.
1353
1361
.
209.
Sailer
,
E.
,
Taborda
,
D. M. G.
, and
Zdravković
,
L.
,
2018
, “
A New Approach to Estimating Temperature Fields Around a Group of Vertical Ground Heat Exchangers in Two-Dimensional Analyses
,”
Renewable Energy
,
118
, pp.
579
590
.
210.
Cimmino
,
M.
,
Bernier
,
M.
, and
Adams
,
F.
,
2013
, “
A Contribution Towards the Determination of g-Functions Using the Finite Line Source
,”
Appl. Therm. Eng.
,
51
(
1–2
), pp.
401
412
.
211.
Sharqawy
,
M. H.
,
Badr
,
H. M.
, and
Mokheimer
,
E. M.
,
2013
, “
Investigation of Buoyancy Effects on Heat Transfer Between a Vertical Borehole Heat Exchanger and the Ground
,”
Geothermics
,
48
, pp.
52
59
.
212.
Mottaghy
,
D.
, and
Dijkshoorn
,
L.
,
2012
, “
Implementing an Effective Finite Difference Formulation for Borehole Heat Exchangers Into a Heat and Mass Transport Code
,”
Renewable Energy
,
45
, pp.
59
71
.
213.
Fang
,
L.
,
Diao
,
N.
,
Shao
,
Z.
,
Zhu
,
K.
, and
Fang
,
Z.
,
2018
, “
A Computationally Efficient Numerical Model for Heat Transfer Simulation of Deep Borehole Heat Exchangers
,”
Energy Build.
,
167
, pp.
79
88
.
214.
Al-Khoury
,
R.
,
Kölbel
,
T.
, and
Schramedei
,
R.
,
2010
, “
Efficient Numerical Modeling of Borehole Heat Exchangers
,”
Comput. Geosci.
,
36
(
10
), pp.
1301
1315
.
215.
Rees
,
S. J.
, and
He
,
M.
,
2013
, “
A Three-Dimensional Numerical Model of Borehole Heat Exchanger Heat Transfer and Fluid Flow
,”
Geothermics
,
46
, pp.
1
13
.
216.
Nabi
,
M.
, and
Al-Khoury
,
R.
,
2012
, “
An Efficient Finite Volume Model for Shallow Geothermal Systems. Part I: Model Formulation
,”
Comput. Geosci.
,
49
, pp.
290
296
.
217.
Nabi
,
M.
, and
Al-Khoury
,
R.
,
2012
, “
An Efficient Finite Volume Model for Shallow Geothermal Systems—Part II: Verification, Validation and Grid Convergence
,”
Comput. Geosci.
,
49
, pp.
297
307
.
218.
Al-Khoury
,
R.
,
Bonnier
,
P. G.
, and
Brinkgreve
,
R. B. J.
,
2005
, “
Efficient Finite Element Formulation for Geothermal Heating Systems. Part I: Steady State
,”
Int. J. Numer. Methods Eng.
,
63
(
7
), pp.
988
1013
.
219.
Al-Khoury
,
R.
, and
Bonnier
,
P. G.
,
2006
, “
Efficient Finite Element Formulation for Geothermal Heating Systems. Part II: Transient
,”
Int. J. Numer. Methods Eng.
,
67
(
5
), pp.
725
745
.
220.
Diersch
,
H.-J. G.
,
Bauer
,
D.
,
Heidemann
,
W.
,
Rühaak
,
W.
, and
Schätzl
,
P.
,
2011
, “
Finite Element Modeling of Borehole Heat Exchanger Systems: Part 1. Fundamentals
,”
Comput. Geosci.
,
37
(
8
), pp.
1122
1135
.
221.
Diersch
,
H.-J. G.
,
Bauer
,
D.
,
Heidemann
,
W.
,
Rühaak
,
W.
, and
Schätzl
,
P.
,
2011
, “
Finite Element Modeling of Borehole Heat Exchanger Systems: Part 2. Numerical Simulation
,”
Comput. Geosci.
,
37
(
8
), pp.
1136
1147
.
222.
Biglarian
,
H.
,
Abbaspour
,
M.
, and
Saidi
,
M. H.
,
2018
, “
Evaluation of a Transient Borehole Heat Exchanger Model in Dynamic Simulation of a Ground Source Heat Pump System
,”
Energy
,
147
, pp.
81
93
.
223.
Biglarian
,
H.
,
Abbaspour
,
M.
, and
Saidi
,
M. H.
,
2017
, “
A Numerical Model for Transient Simulation of Borehole Heat Exchangers
,”
Renewable Energy
,
104
, pp.
224
237
.
224.
Signorelli
,
S.
,
Bassetti
,
S.
,
Pahud
,
D.
, and
Kohl
,
T.
,
2007
, “
Numerical Evaluation of Thermal Response Tests
,”
Geothermics
,
36
(
2
), pp.
141
166
.
225.
Brunetti
,
G.
,
Saito
,
H.
,
Saito
,
T.
, and
Šimůnek
,
J.
,
2017
, “
A Computationally Efficient Pseudo-3D Model for the Numerical Analysis of Borehole Heat Exchangers
,”
Appl. Energy
,
208
, pp.
1113
1127
.
226.
Li
,
W.
,
Li
,
X.
,
Wang
,
Y.
, and
Tu
,
J.
,
2018
, “
An Integrated Predictive Model of the Long-Term Performance of Ground Source Heat Pump (GSHP) Systems
,”
Energy Build.
,
159
, pp.
309
318
.
227.
Marcotte
,
D.
, and
Pasquier
,
P.
,
2008
, “
Fast Fluid and Ground Temperature Computation for Geothermal Ground-Loop Heat Exchanger Systems
,”
Geothermics
,
37
(
6
), pp.
651
665
.
228.
Zhou
,
S.
,
Liu
,
D.
,
Cao
,
S.
,
Liu
,
X.
, and
Zhou
,
Y.
,
2019
, “
An Application Status Review of Computational Intelligence Algorithm in GSHP Field
,”
Energy Build.
,
203
, p.
109424
.
229.
Chen
,
S.
,
Mao
,
J.
,
Chen
,
F.
,
Hou
,
P.
, and
Li
,
Y.
,
2018
, “
Development of ANN Model for Depth Prediction of Vertical Ground Heat Exchanger
,”
Int. J. Heat Mass Transfer
,
117
, pp.
617
626
.
230.
Zhou
,
S.
,
Chu
,
X.
,
Cao
,
S.
,
Liu
,
X.
, and
Zhou
,
Y.
,
2020
, “
Prediction of the Ground Temperature With ANN, LS-SVM and Fuzzy LS-SVM for GSHP Application
,”
Geothermics
,
84
, p.
101757
.
231.
Law
,
Y. L. E.
, and
Dworkin
,
S. B.
,
2016
, “
Characterization of the Effects of Borehole Configuration and Interference With Long Term Ground Temperature Modelling of Ground Source Heat Pumps
,”
Appl. Energy
,
179
, pp.
1032
1047
.
232.
Wołoszyn
,
J.
, and
Gołaś
,
A.
,
2014
, “
Sensitivity Analysis of Efficiency Thermal Energy Storage on Selected Rock Mass and Grout Parameters Using Design of Experiment Method
,”
Energy Convers. Manage.
,
87
, pp.
1297
1304
.
233.
Wołoszyn
,
J.
, and
Gołaś
,
A.
,
2016
, “
Experimental Verification and Programming Development of a New MDF Borehole Heat Exchanger Numerical Model
,”
Geothermics
,
59
, pp.
67
76
.
234.
Kong
,
M.
,
Alvarado
,
J. L.
,
Thies
,
C.
,
Morefield
,
S.
, and
Marsh
,
C. P.
,
2017
, “
Field Evaluation of Microencapsulated Phase Change Material Slurry in Ground Source Heat Pump Systems
,”
Energy
,
122
, pp.
691
700
.
235.
Safa
,
A. A.
,
Fung
,
A. S.
, and
Kumar
,
R.
,
2015
, “
Heating and Cooling Performance Characterisation of Ground Source Heat Pump System by Testing and TRNSYS Simulation
,”
Renewable Energy
,
83
, pp.
565
575
.
236.
Esen
,
H.
,
Inalli
,
M.
, and
Esen
,
M.
,
2007
, “
Numerical and Experimental Analysis of a Horizontal Ground-Coupled Heat Pump System
,”
Build. Environ.
,
42
(
3
), pp.
1126
1134
.
237.
Blum
,
P.
,
Campillo
,
G.
, and
Kölbel
,
T.
,
2011
, “
Techno-Economic and Spatial Analysis of Vertical Ground Source Heat Pump Systems in Germany
,”
Energy
,
36
(
5
), pp.
3002
3011
.
238.
Congedo
,
P. M.
,
Colangelo
,
G.
, and
Starace
,
G.
,
2012
, “
CFD Simulations of Horizontal Ground Heat Exchangers: A Comparison Among Different Configurations
,”
Appl. Therm. Eng.
,
33–34
, pp.
24
32
.
239.
Michopoulos
,
A.
,
Bozis
,
D.
,
Kikidis
,
P.
,
Papakostas
,
K.
, and
Kyriakis
,
N. A.
,
2007
, “
Three-Years Operation Experience of a Ground Source Heat Pump System in Northern Greece
,”
Energy Build.
,
39
(
3
), pp.
328
334
.
240.
Partenay
,
V.
,
Riederer
,
P.
,
Salque
,
T.
, and
Wurtz
,
E.
,
2011
, “
The Influence of the Borehole Short-Time Response on Ground Source Heat Pump System Efficiency
,”
Energy Build.
,
43
(
6
), pp.
1280
1287
.
241.
Ikeda
,
S.
,
Choi
,
W.
, and
Ooka
,
R.
,
2017
, “
Optimization Method for Multiple Heat Source Operation Including Ground Source Heat Pump Considering Dynamic Variation in Ground Temperature
,”
Appl. Energy
,
193
, pp.
466
478
.
242.
Go
,
G.-H.
,
Lee
,
S.-R.
,
Kang
,
H.-B.
,
Yoon
,
S.
, and
Kim
,
M.-J.
,
2015
, “
A Novel Hybrid Design Algorithm for Spiral Coil Energy Piles That Considers Groundwater Advection
,”
Appl. Therm. Eng.
,
78
, pp.
196
208
.
243.
Mao
,
Q.
, and
Chen
,
Y.
,
2017
, “
Experimental Investigation of Thermal Performance of a Ground Source Heat Pump System for Spring Season
,”
Energy Build.
,
152
, pp.
336
340
.
244.
Zhou
,
S.
,
Cui
,
W.
,
Tao
,
J.
, and
Peng
,
Q.
,
2016
, “
Study on Ground Temperature Response of Multilayer Stratums Under Operation of Ground-Source Heat Pump
,”
Appl. Therm. Eng.
,
101
, pp.
173
182
.
245.
Zhang
,
W.
,
Yang
,
H.
,
Cui
,
P.
,
Lu
,
L.
,
Diao
,
N.
, and
Fang
,
Z.
,
2015
, “
Study on Spiral Source Models Revealing Groundwater Transfusion Effects on Pile Foundation Ground Heat Exchangers
,”
Int. J. Heat Mass Transfer
,
84
, pp.
119
129
.
246.
Zhang
,
W.
,
Yang
,
H.
,
Lu
,
L.
, and
Fang
,
Z.
,
2013
, “
The Analysis on Solid Cylindrical Heat Source Model of Foundation Pile Ground Heat Exchangers With Groundwater Flow
,”
Energy
,
55
, pp.
417
425
.
247.
Wang
,
D.
,
Lu
,
L.
,
Zhang
,
W.
, and
Cui
,
P.
,
2015
, “
Numerical and Analytical Analysis of Groundwater Influence on the Pile Geothermal Heat Exchanger With Cast-in Spiral Coils
,”
Appl. Energy
,
160
, pp.
705
714
.
248.
Cui
,
P.
,
Li
,
X.
,
Man
,
Y.
, and
Fang
,
Z.
,
2011
, “
Heat Transfer Analysis of Pile Geothermal Heat Exchangers With Spiral Coils
,”
Appl. Energy
,
88
(
11
), pp.
4113
4119
.
249.
Lei
,
F.
,
Hu
,
P.
, and
Huang
,
X.
,
2018
, “
Hybrid Analytical Model for Composite Heat Transfer in a Spiral Pile Ground Heat Exchanger
,”
Appl. Therm. Eng.
,
137
, pp.
555
566
.
250.
Fontaine
,
P. O.
,
Marcotte
,
D.
,
Pasquier
,
P.
, and
Thibodeau
,
D.
,
2011
, “
Modeling of Horizontal Geoexchange Systems for Building Heating and Permafrost Stabilization
,”
Geothermics
,
40
(
3
), pp.
211
220
.
251.
Lamarche
,
L.
,
2019
, “
Horizontal Ground Heat Exchangers Modelling
,”
Appl. Therm. Eng.
,
155
, pp.
534
545
.
252.
Lim
,
H.
,
Kim
,
C.
,
Cho
,
Y.
, and
Kim
,
M.
,
2017
, “
Energy Saving Potentials From the Application of Heat Pipes on Geothermal Heat Pump System
,”
Appl. Therm. Eng.
,
126
, pp.
1191
1198
.
253.
Soni
,
S. K.
,
Pandey
,
M.
, and
Bartaria
,
V. N.
,
2015
, “
Ground Coupled Heat Exchangers: A Review and Applications
,”
Renewable Sustainable Energy Rev.
,
47
, pp.
83
92
.
254.
Yang
,
W.
,
2013
, “
Experimental Performance Analysis of a Direct-Expansion Ground Source Heat Pump in Xiangtan, China
,”
Energy
,
59
, pp.
334
339
.
255.
Wang
,
H.
,
Zhao
,
Q.
,
Wu
,
J.
,
Yang
,
B.
, and
Chen
,
Z.
,
2013
, “
Experimental Investigation on the Operation Performance of a Direct Expansion Ground Source Heat Pump System for Space Heating
,”
Energy Build.
,
61
, pp.
349
355
.
256.
Fannou
,
J.-L.
,
Rousseau
,
C.
,
Lamarche
,
L.
, and
Stanislaw
,
K.
,
2014
, “
Experimental Analysis of a Direct Expansion Geothermal Heat Pump in Heating Mode
,”
Energy Build.
,
75
, pp.
290
300
.
257.
De Carli
,
M.
,
Fiorenzato
,
S.
, and
Zarrella
,
A.
,
2015
, “
Performance of Heat Pumps With Direct Expansion in Vertical Ground Heat Exchangers in Heating Mode
,”
Energy Convers. Manage.
,
95
, pp.
120
130
.
258.
Fannou
,
J.-L. C.
,
Rousseau
,
C.
,
Lamarche
,
L.
, and
Kajl
,
S.
,
2015
, “
A Comparative Performance Study of a Direct Expansion Geothermal Evaporator Using R410A and R407C as Refrigerant Alternatives to R22
,”
Appl. Therm. Eng.
,
82
, pp.
306
317
.
259.
Austin
,
B. T.
, and
Sumathy
,
K.
,
2011
, “
Parametric Study on the Performance of a Direct-Expansion Geothermal Heat Pump Using Carbon Dioxide
,”
Appl. Therm. Eng.
,
31
(
17–18
), pp.
3774
3782
.
260.
Badache
,
M.
,
Ouzzane
,
M.
,
Eslami-Nejad
,
P.
, and
Aidoun
,
Z.
,
2018
, “
Experimental Study of a Carbon Dioxide Direct-Expansion Ground Source Heat Pump (CO2-DX-GSHP)
,”
Appl. Therm. Eng.
,
130
, pp.
1480
1488
.
261.
Eslami-Nejad
,
P.
,
Ouzzane
,
M.
, and
Aidoun
,
Z.
,
2015
, “
A Quasi-Transient Model of a Transcritical Carbon Dioxide Direct-Expansion Ground Source Heat Pump for Space and Water Heating
,”
Appl. Therm. Eng.
,
91
, pp.
259
269
.
262.
Nguyen
,
A.
,
Eslami-Nejad
,
P.
,
Badache
,
M.
, and
Bastani
,
A.
,
2019
, “
Influence of an Internal Heat Exchanger on the Operation of a CO2 Direct Expansion Ground Source Heat Pump
,”
Energy Build.
,
202
, p.
109343
.
263.
Ghazizade-Ahsaee
,
H.
, and
Ameri
,
M.
,
2018
, “
Energy and Exergy Investigation of a Carbon Dioxide Direct-Expansion Geothermal Heat Pump
,”
Appl. Therm. Eng.
,
129
, pp.
165
178
.
264.
Rousseau
,
C.
,
Comlan Fannou
,
J.-L.
,
Lamarche
,
L.
,
Ouzzane
,
M.
, and
Kajl
,
S.
,
2015
, “
Modeling and Experimental Validation of a Transient Direct Expansion Geothermal Heat Exchanger
,”
Geothermics
,
57
, pp.
95
103
.
265.
Gao
,
Y.
,
Cheng
,
Y.
, and
Nan
,
S.
,
2017
, “
Heat Transfer Performance of the Underground CO2 Pipe in the Direct Expansion Ground Source Heat Pump
,”
Energy Procedia
,
105
, pp.
4955
4962
.
266.
Soni
,
S. K.
,
Pandey
,
M.
, and
Bartaria
,
V. N.
,
2016
, “
Experimental Analysis of a Direct Expansion Ground Coupled Heat Exchange System for Space Cooling Requirements
,”
Energy Build.
,
119
, pp.
85
92
.
267.
Ndiaye
,
D.
,
2016
, “
Reliability and Performance of Direct-Expansion Ground-Coupled Heat Pump Systems: Issues and Possible Solutions
,”
Renewable Sustainable Energy Rev.
,
66
, pp.
802
814
.
268.
Hakkaki-Fard
,
A.
,
Eslami-Nejad
,
P.
,
Aidoun
,
Z.
, and
Ouzzane
,
M.
,
2015
, “
A Techno-Economic Comparison of a Direct Expansion Ground-Source and an Air-Source Heat Pump System in Canadian Cold Climates
,”
Energy
,
87
, pp.
49
59
.
269.
Guo
,
Y.
,
Zhang
,
G.
,
Zhou
,
J.
,
Wu
,
J.
, and
Shen
,
W.
,
2012
, “
A Techno-Economic Comparison of a Direct Expansion Ground-Source and a Secondary Loop Ground-Coupled Heat Pump System for Cooling in a Residential Building
,”
Appl. Therm. Eng.
,
35
, pp.
29
39
.
270.
Wang
,
X.
,
Ma
,
C.
, and
Lu
,
Y.
,
2009
, “
An Experimental Study of a Direct Expansion Ground-Coupled Heat Pump System in Heating Mode
,”
Int. J. Energy Res.
,
33
(
15
), pp.
1367
1383
.
You do not currently have access to this content.