Abstract

The research collection aims at finding the various possible opportunities for the effective integration of shallow geothermal energy (SGE) to decrease the energy demand in the built environment and to reduce emission associated with it. The direct utilization of SGE using a ground source heat pump (GSHP) has been reviewed in comprehensive review Part I. From the extensive review, it is found that the hybrid GSHP is needed to avoid ground thermal imbalance and peak demand. Hybrid GSHP can adopt various supplemental heat sources and sinks according to the local climatic conditions and the balance of energy demands. The primary focus on the integration of subsystems such as biomass, solar energy (photovoltaic (PV), photovoltaic thermal (PVT), and collector), phase change material, micro gas turbine, and absorption heat pump with GSHP is presented for heating application. This comprehensive review Part II highlights the recent research findings and potential research points in the hybrid GSHP for further research and developments.

References

1.
Soni
,
S. K.
,
Pandey
,
M.
, and
Bartaria
,
V. N.
,
2016
, “
Hybrid Ground Coupled Heat Exchanger Systems for Space Heating/Cooling Applications: A Review
,”
Renewable Sustainable Energy Rev.
,
60
, pp.
724
738
.
2.
Mensah
,
K.
,
Jang
,
Y.-S.
,
Choi
,
J. M.
,
2017
, “
Assessment of Design Strategies in a Ground Source Heat Pump System
,”
Energy Build.
,
138
, pp.
301
308
.
3.
Michopoulos
,
A.
,
Bozis
,
D.
,
Kikidis
,
P.
,
Papakostas
,
K.
, and
Kyriakis
,
N. A.
,
2007
, “
Three-years Operation Experience of a Ground Source Heat Pump System in Northern Greece
,”
Energy Build.
,
39
(
3
), pp.
328
334
.
4.
Zhai
,
X. Q.
,
Qu
,
M.
,
Yu
,
X.
,
Yang
,
Y.
, and
Wang
,
R. Z.
,
2011
, “
A Review for the Applications and Integrated Approaches of Ground-Coupled Heat Pump Systems
,”
Renewable Sustainable Energy Rev.
,
15
(
6
), pp.
3133
3140
.
5.
Ramamoorthy
,
M.
,
Jin
,
H.
,
Chiasson
,
A. D.
, and
Spitler
,
J. D.
,
2001
, “
Optimal Sizing of Hybrid Ground-Source Heat Pump Systems That Use a Cooling Pond as a Supplemental Heat Rejecter—A System Simulation Approach
,”
ASHRAE Trans.
,
107
(
Part 1
), pp.
26
38
.
6.
Chiasson
,
A. D.
,
Spitler
,
J. D.
,
Rees
,
S. J.
, and
Smith
,
M. D.
,
2000
, “
Model for Simulating the Performance of a Shallow Pond as a Supplemental Heat Rejecter With Closed-Loop Ground-Source Heat Pump Systems
,”
ASHRAE Trans.
,
106
(
4
), pp.
107
122
.
7.
Nguyen
,
H. V.
,
Law
,
Y. L. E.
,
Alavy
,
M.
,
Walsh
,
P. R.
,
Leong
,
W. H.
, and
Dworkin
,
S. B.
,
2014
, “
An Analysis of the Factors Affecting Hybrid Ground-Source Heat Pump Installation Potential in North America
,”
Appl. Energy
,
125
, pp.
28
38
.
8.
Sedaghat
,
A.
,
Habibi
,
M.
, and
Hakkaki-Fard
,
A.
,
2020
, “
A Novel Ground Thermal Recovery System for Horizontal Ground Heat Exchangers in a Hot Climate
,”
Energy Convers. Manage.
,
224
, p.
113350
.
9.
Park
,
H.
,
Lee
,
J. S.
,
Kim
,
W.
, and
Kim
,
Y.
,
2013
, “
The Cooling Seasonal Performance Factor of a Hybrid Ground-Source Heat Pump With Parallel and Serial Configurations
,”
Appl. Energy
,
102
, pp.
877
884
.
10.
Hassanzadeh
,
R.
, and
Khalili
,
M.
,
2018
, “
Replacing the wet Cooling Tower with a Ground Source Heat Exchanger as a Clean Technology
,”
J. Build. Eng.
,
18
, pp.
331
342
.
11.
Shen
,
C.
, and
Li
,
X.
,
2016
, “
Dynamic Thermal Performance of Pipe-Embedded Building Envelope Utilizing Evaporative Cooling Water in the Cooling Season
,”
Appl. Therm. Eng.
,
106
, pp.
1103
1113
.
12.
Li
,
X.
,
Lyu
,
W.
,
Ran
,
S.
,
Wang
,
B.
,
Wu
,
W.
,
Yang
,
Z.
,
Jiang
,
S.
,
Cui
,
M.
,
Song
,
P.
,
You
,
T.
, and
Shi
,
W.
,
2020
, “
Combination Principle of Hybrid Sources and Three Typical Types of Hybrid Source Heat Pumps for Year-Round Efficient Operation
,”
Energy
,
193
, p.
116772
.
13.
Xu
,
L.
,
Pu
,
L.
,
Zhang
,
S.
, and
Li
,
Y.
,
2021
, “
Hybrid Ground Source Heat Pump System for Overcoming Soil Thermal Imbalance: A Review
,”
Sustain. Energy Technol. Assess.
,
44
, p.
101098
.
14.
Qi
,
Z.
,
Gao
,
Q.
,
Liu
,
Y.
,
Yan
,
Y. Y.
, and
Spitler
,
J. D.
,
2014
, “
Status and Development of Hybrid Energy Systems From Hybrid Ground Source Heat Pump in China and Other Countries
,”
Renewable Sustainable Energy Rev.
,
29
, pp.
37
51
.
15.
Menberg
,
K.
,
Heo
,
Y.
,
Choi
,
W.
,
Ooka
,
R.
,
Choudhary
,
R.
, and
Shukuya
,
M.
,
2017
, “
Exergy Analysis of a Hybrid Ground-Source Heat Pump System
,”
Appl. Energy
,
204
, pp.
31
46
.
16.
Liu
,
Z.
,
Xu
,
W.
,
Zhai
,
X.
,
Qian
,
C.
, and
Chen
,
X.
,
2017
, “
Feasibility and Performance Study of the Hybrid Ground-Source Heat Pump System for One Office Building in Chinese Heating Dominated Areas
,”
Renewable Energy
,
101
, pp.
1131
1140
.
17.
Zhang
,
M.
,
Liu
,
X.
,
Biswas
,
K.
, and
Warner
,
J.
,
2019
, “
A Three-Dimensional Numerical Investigation of a Novel Shallow Bore Ground Heat Exchanger Integrated With Phase Change Material
,”
Appl. Therm. Eng.
,
162
.
18.
Zhu
,
N.
,
Hu
,
P.
,
Xu
,
L.
,
Jiang
,
Z.
, and
Lei
,
F.
,
2014
, “
Recent Research and Applications of Ground Source Heat Pump Integrated With Thermal Energy Storage Systems: A Review
,”
Appl. Therm. Eng.
,
71
(
1
), pp.
142
151
.
19.
Safa
,
A. A.
,
Fung
,
A. S.
, and
Kumar
,
R.
,
2015
, “
Heating and Cooling Performance Characterisation of Ground Source Heat Pump System by Testing and TRNSYS Simulation
,”
Renewable Energy
,
83
, pp.
565
575
.
20.
Jegadheeswaran
,
S.
,
Pohekar
,
S. D.
, and
Kousksou
,
T.
,
2010
, “
Exergy Based Performance Evaluation of Latent Heat Thermal Storage System: A Review
,”
Renewable Sustainable Energy Rev.
,
14
(
9
), pp.
2580
2595
.
21.
Zhou
,
D.
,
Zhao
,
C. Y.
, and
Tian
,
Y.
,
2012
, “
Review on Thermal Energy Storage with Phase Change Materials (PCMs) in Building Applications
,”
Appl. Energy
,
92
, pp.
593
605
.
22.
Ascione
,
F.
,
2017
, “
Energy Conservation and Renewable Technologies for Buildings to Face the Impact of the Climate Change and Minimize the use of Cooling
,”
Sol. Energy
,
154
, pp.
34
100
.
23.
Benli
,
H.
,
2011
, “
Energetic Performance Analysis of a Ground-Source Heat Pump System With Latent Heat Storage for a Greenhouse Heating
,”
Energy Convers. Manage.
,
52
(
1
), pp.
581
589
.
24.
Tyagi
,
V. V.
, and
Buddhi
,
D.
,
2008
, “
Thermal Cycle Testing of Calcium Chloride Hexahydrate as a Possible PCM for Latent Heat Storage
,”
Sol. Energy Mater. Sol. Cells
,
92
(
8
), pp.
891
899
.
25.
Lv
,
J.
,
Wei
,
Z.
, and
Zhang
,
J.
,
2016
, “
Running and Economy Performance Analysis of Ground Source Heat Pump With Thermal Energy Storage Devices
,”
Energy Build.
,
127
, pp.
1108
1116
.
26.
Nouri
,
G.
,
Noorollahi
,
Y.
, and
Yousefi
,
H.
,
2019
, “
Solar Assisted Ground Source Heat Pump Systems—A Review
,”
Appl. Therm. Eng.
,
163
, p.
114351
.
27.
Franco
,
A.
, and
Fantozzi
,
F.
,
2016
, “
Experimental Analysis of a Self Consumption Strategy for Residential Building: The Integration of PV System and Geothermal Heat Pump
,”
Renewable Energy
,
86
, pp.
1075
1085
.
28.
Wu
,
W.
, and
Skye
,
H. M.
,
2018
, “
Net-zero Nation: HVAC and PV Systems for Residential net-Zero Energy Buildings Across the United States
,”
Energy Convers. Manage.
,
177
, pp.
605
628
.
29.
Masa-Bote
,
D.
,
Castillo-Cagigal
,
M.
,
Matallanas
,
E.
,
Caamaño-Martín
,
E.
,
Gutiérrez
,
A.
,
Monasterio-Huelín
,
F.
, and
Jiménez-Leube
,
J.
,
2014
, “
Improving Photovoltaics Grid Integration Through Short Time Forecasting and Self-Consumption
,”
Appl. Energy
,
125
, pp.
103
113
.
30.
Cao
,
S.
, and
Sirén
,
K.
,
2014
, “
Impact of Simulation Time-Resolution on the Matching of PV Production and Household Electric Demand
,”
Appl. Energy
,
128
, pp.
192
208
.
31.
Roselli
,
C.
,
Diglio
,
G.
,
Sasso
,
M.
, and
Tariello
,
F.
,
2019
, “
A Novel Energy Index to Assess the Impact of a Solar PV-Based Ground Source Heat Pump on the Power Grid
,”
Renewable Energy
,
143
, pp.
488
500
.
32.
Thygesen
,
R.
, and
Karlsson
,
B.
,
2014
, “
Simulation and Analysis of a Solar Assisted Heat Pump System With Two Different Storage Types for High Levels of PV Electricity Self-Consumption
,”
Sol. Energy
,
103
, pp.
19
27
.
33.
Salpakari
,
J.
, and
Lund
,
P.
,
2016
, “
Optimal and Rule-Based Control Strategies for Energy Flexibility in Buildings With PV
,”
Appl. Energy
,
161
, pp.
425
436
.
34.
Thygesen
,
R.
, and
Karlsson
,
B.
,
2016
, “
Simulation of a Proposed Novel Weather Forecast Control for Ground Source Heat Pumps as a Mean to Evaluate the Feasibility of Forecast Controls’ Influence on the Photovoltaic Electricity Self-Consumption
,”
Appl. Energy
,
164
, pp.
579
589
.
35.
Kalogirou
,
S. A.
,
Karellas
,
S.
,
Braimakis
,
K.
,
Stanciu
,
C.
, and
Badescu
,
V.
,
2016
, “
Exergy Analysis of Solar Thermal Collectors and Processes
,”
Prog. Energy Combust. Sci.
,
56
, pp.
106
137
.
36.
Michael
,
J. J.
,
Iniyan
,
S.
, and
Goic
,
R.
,
2015
, “
Flat Plate Solar Photovoltaic–Thermal (PV/T) Systems: A Reference Guide
,”
Renewable Sustainable Energy Rev.
,
51
, pp.
62
88
.
37.
Chen
,
Y.
,
Wang
,
J.
,
Ma
,
C.
, and
Shi
,
G.
,
2019
, “
Multicriteria Performance Investigations of a Hybrid Ground Source Heat Pump System Integrated with Concentrated Photovoltaic Thermal Solar Collectors
,”
Energy Convers. Manage.
,
197
, p.
111862
.
38.
Yang
,
L. H.
,
De Liang
,
J.
,
Hsu
,
C. Y.
,
Yang
,
T. H.
, and
Chen
,
S. L.
,
2019
, “
Enhanced Efficiency of Photovoltaic Panels by Integrating a Spray Cooling System With Shallow Geothermal Energy Heat Exchanger
,”
Renewable Energy
,
134
, pp.
970
981
.
39.
Lee
,
E.
,
and Entchev
,
E. J.
,
and Soesanto
,
E.
, and
and Kang
,
A. P.
,
2014
, “
Photovoltaic Thermal (PVT) Integrated Ground Source Heat Pump System Annual Energy Performance Simulation for a Multi-Load Case
,”
11th International Energy Agency Heat Pump Conference
,
Montreal, Canada
, pp.
1
10
.
40.
Andrew Putrayudha
,
S.
,
Kang
,
E. C.
,
Evgueniy
,
E.
,
Libing
,
Y.
, and
Lee
,
E. J.
,
2015
, “
A Study of Photovoltaic/Thermal (PVT)-Ground Source Heat Pump Hybrid System by Using Fuzzy Logic Control
,”
Appl. Therm. Eng.
,
89
, pp.
578
586
.
41.
Naranjo-Mendoza
,
C.
,
Oyinlola
,
M. A.
,
Wright
,
A. J.
, and
Greenough
,
R. M.
,
2019
, “
Experimental Study of a Domestic Solar-Assisted Ground Source Heat Pump with Seasonal Underground Thermal Energy Storage Through Shallow Boreholes
,”
Appl. Therm. Eng.
,
162
, p.
114218
.
42.
Ozturk
,
M.
,
2014
, “
Energy and Exergy Analysis of a Combined Ground Source Heat Pump System
,”
Appl. Therm. Eng.
,
73
(
1
), pp.
360
368
.
43.
Abu-Rumman
,
M.
,
Hamdan
,
M.
, and
Ayadi
,
O.
,
2020
, “
Performance Enhancement of a Photovoltaic Thermal (PVT) and Ground-Source Heat Pump System
,”
Geothermics
,
85
, p.
101809
.
44.
Sakellariou
,
E. I.
,
Wright
,
A. J.
,
Axaopoulos
,
P.
, and
Oyinlola
,
M. A.
,
2019
, “
PVT Based Solar Assisted Ground Source Heat Pump System: Modelling Approach and Sensitivity Analyses
,”
Sol. Energy
,
193
, pp.
37
50
.
45.
Sommerfeldt
,
N.
, and
Madani
,
H.
,
2019
, “
In-Depth Techno-Economic Analysis of PV/Thermal Plus Ground Source Heat Pump Systems for Multi-Family Houses in a Heating Dominated Climate
,”
Sol. Energy
,
190
, pp.
44
62
.
46.
Balaji
,
K.
,
Iniyan
,
S.
, and
Swami
,
M. V.
,
2018
, “
Exergy, Economic and Environmental Analysis of Forced Circulation Flat Plate Solar Collector Using Heat Transfer Enhancer in Riser Tube
,”
J. Cleaner Prod.
,
171
, pp.
1118
1127
.
47.
Nathan
,
G. J.
,
Jafarian
,
M.
,
Dally
,
B. B.
,
Saw
,
W. L.
,
Ashman
,
P. J.
,
Hu
,
E.
, and
Steinfeld
,
A.
,
2018
, “
Solar Thermal Hybrids for Combustion Power Plant: A Growing Opportunity
,”
Prog. Energy Combust. Sci.
,
64
, pp.
4
28
.
48.
Lazzarin
,
R. M.
,
2012
, “
Dual Source Heat Pump Systems: Operation and Performance
,”
Energy Build.
,
52
, pp.
77
85
.
49.
Busato
,
F.
,
Lazzarin
,
R. M.
, and
Noro
,
M.
,
2013
, “
Two Years of Recorded Data for a Multisource Heat Pump System: A Performance Analysis
,”
Appl. Therm. Eng.
,
57
(
1–2
), pp.
39
47
.
50.
Rad
,
F. M.
,
Fung
,
A. S.
, and
Leong
,
W. H.
,
2013
, “
Feasibility of Combined Solar Thermal and Ground Source Heat Pump Systems in Cold Climate, Canada
,”
Energy Build.
,
61
, pp.
224
232
.
51.
Trillat-Berdal
,
V.
,
Souyri
,
B.
, and
Achard
,
G.
,
2007
, “
Coupling of Geothermal Heat Pumps with Thermal Solar Collectors
,”
Appl. Therm. Eng.
,
27
(
10
), pp.
1750
1755
.
52.
Trillat-Berdal
,
V.
,
Souyri
,
B.
, and
Fraisse
,
G.
,
2006
, “
Experimental Study of a Ground-Coupled Heat Pump Combined with Thermal Solar Collectors
,”
Energy Build.
,
38
(
12
), pp.
1477
1484
.
53.
Liu
,
L.
,
Zhu
,
N.
, and
Zhao
,
J.
,
2016
, “
Thermal Equilibrium Research of Solar Seasonal Storage System Coupling With Ground-Source Heat Pump
,”
Energy
,
99
, pp.
83
90
.
54.
Razavi
,
S. H.
,
Ahmadi
,
R.
, and
Zahedi
,
A.
,
2018
, “
Modeling, Simulation and Dynamic Control of Solar Assisted Ground Source Heat Pump to Provide Heating Load and DHW
,”
Appl. Therm. Eng.
,
129
, pp.
127
144
.
55.
Emmi
,
G.
,
Zarrella
,
A.
,
De Carli
,
M.
, and
Galgaro
,
A.
,
2015
, “
An Analysis of Solar Assisted Ground Source Heat Pumps in Cold Climates
,”
Energy Convers. Manage.
,
106
, pp.
660
675
.
56.
Stojanović
,
B.
, and
Akander
,
J.
,
2010
, “
Build-up and Long-Term Performance Test of a Full-Scale Solar-Assisted Heat Pump System for Residential Heating in Nordic Climatic Conditions
,”
Appl. Therm. Eng.
,
30
(
2–3
), pp.
188
195
.
57.
Wang
,
X.
,
Zheng
,
M.
,
Zhang
,
W.
,
Zhang
,
S.
, and
Yang
,
T.
,
2010
, “
Experimental Study of a Solar-Assisted Ground-Coupled Heat Pump System With Solar Seasonal Thermal Storage in Severe Cold Areas
,”
Energy Build.
,
42
(
11
), pp.
2104
2110
.
58.
Wang
,
H.
, and
Qi
,
C.
,
2008
, “
Performance Study of Underground Thermal Storage in a Solar-Ground Coupled Heat Pump System for Residential Buildings
,”
Energy Build.
,
40
(
7
), pp.
1278
1286
.
59.
Chen
,
X.
, and
Yang
,
H.
,
2012
, “
Performance Analysis of a Proposed Solar Assisted Ground Coupled Heat Pump System
,”
Appl. Energy
,
97
, pp.
888
896
.
60.
Yang
,
W. B.
,
Shi
,
M. H.
, and
Dong
,
H.
,
2006
, “
Numerical Simulation of the Performance of a Solar-Earth Source Heat Pump System
,”
Appl. Therm. Eng.
,
26
(
17–18
), pp.
2367
2376
.
61.
Verma
,
V.
, and
Murugesan
,
K.
, “
Experimental Study of Solar Energy Storage and Space Heating Using Solar Assisted Ground Source Heat Pump System for Indian Climatic Conditions
,”
Energy Build.
,
139
, pp.
569
577
.
62.
Xi
,
C.
,
Hongxing
,
Y.
,
Lin
,
L.
,
Jinggang
,
W.
, and
Wei
,
L.
,
2011
, “
Experimental Studies on a Ground Coupled Heat Pump With Solar Thermal Collectors for Space Heating
,”
Energy
,
36
(
8
), pp.
5292
5300
.
63.
Ozgener
,
O.
, and
Hepbasli
,
A.
,
2005
, “
Performance Analysis of a Solar-Assisted Ground-Source Heat Pump System for Greenhouse Heating: An Experimental Study
,”
Build. Environ.
,
40
(
8
), pp.
1040
1050
.
64.
Zhu
,
N.
,
Wang
,
J.
, and
Liu
,
L.
,
2015
, “
Performance Evaluation Before and After Solar Seasonal Storage Coupled With Ground Source Heat Pump
,”
Energy Convers. Manage.
,
103
, pp.
924
933
.
65.
Dai
,
L.
,
Li
,
S.
,
DuanMu
,
L.
,
Li
,
X.
,
Shang
,
Y.
, and
Dong
,
M.
,
2015
, “
Experimental Performance Analysis of a Solar Assisted Ground Source Heat Pump System Under Different Heating Operation Modes
,”
Appl. Therm. Eng.
,
75
, pp.
325
333
.
66.
Wang
,
E.
,
Fung
,
A. S.
,
Qi
,
C.
, and
Leong
,
W. H.
,
2012
, “
Performance Prediction of a Hybrid Solar Ground-Source Heat Pump System
,”
Energy Build.
,
47
, pp.
600
611
.
67.
Utlu
,
Z.
,
Aydın
,
D.
, and
Kıncay
,
O.
,
2014
, “
Comprehensive Thermodynamic Analysis of a Renewable Energy Sourced Hybrid Heating System Combined with Latent Heat Storage
,”
Energy Convers. Manage.
,
84
, pp.
311
325
.
68.
Han
,
Z.
,
Zheng
,
M.
,
Kong
,
F.
,
Wang
,
F.
,
Li
,
Z.
, and
Bai
,
T.
,
2008
, “
Numerical Simulation of Solar Assisted Ground-Source Heat Pump Heating System With Latent Heat Energy Storage in Severely Cold Area
,”
Appl. Therm. Eng.
,
28
(
11–12
), pp.
1427
1436
.
69.
Cimmino
,
M.
, and
Eslami-Nejad
,
P.
,
2017
, “
A Simulation Model for Solar Assisted Shallow Ground Heat Exchangers in Series Arrangement
,”
Energy Build.
,
157
, pp.
227
246
.
70.
Eslami-nejad
,
P.
, and
Bernier
,
M.
,
2011
, “
Coupling of Geothermal Heat Pumps with Thermal Solar Collectors Using Double U-Tube Boreholes with two Independent Circuits
,”
Appl. Therm. Eng.
,
31
(
14–15
), pp.
3066
3077
.
71.
Verma
,
V.
, and
Murugesan
,
K.
,
2014
, “
Optimization of Solar Assisted Ground Source Heat Pump System for Space Heating Application by Taguchi Method and Utility Concept
,”
Energy Build.
,
82
, pp.
296
309
.
72.
Wu
,
W.
,
You
,
T.
,
Wang
,
B.
,
Shi
,
W.
, and
Li
,
X.
,
2014
, “
Evaluation of Ground Source Absorption Heat Pumps Combined With Borehole Free Cooling
,”
Energy Convers. Manage.
,
79
, pp.
334
343
.
73.
Si
,
Q.
,
Okumiya
,
M.
, and
Zhang
,
X.
,
2014
, “
Performance Evaluation and Optimization of a Novel Solar-Ground Source Heat Pump System
,”
Energy Build.
,
70
, pp.
237
245
.
74.
Yang
,
W.
,
Sun
,
L.
, and
Chen
,
Y.
,
2015
, “
Experimental Investigations of the Performance of a Solar-Ground Source Heat Pump System Operated in Heating Modes
,”
Energy Build.
,
89
, pp.
97
111
.
75.
Kimiaei
,
S.
, and
Salmanzadeh
,
M.
,
2020
, “
Effects of Saturated Soil on the Lengths of a Double U-Tube Borehole with two Independent Circuits, a Parallel Double U-Tube Borehole and on the Power Consumption of a GSHP
,”
Renewable Energy
,
145
, pp.
202
214
.
76.
Girard
,
A.
,
Gago
,
E. J.
,
Muneer
,
T.
, and
Caceres
,
G.
,
2015
, “
Higher Ground Source Heat Pump COP in a Residential Building Through the use of Solar Thermal Collectors
,”
Renewable Energy
,
80
, pp.
26
39
.
77.
Kjellsson
,
E.
,
Hellström
,
G.
, and
Perers
,
B.
,
2010
, “
Optimization of Systems with the Combination of Ground-Source Heat Pump and Solar Collectors in Dwellings
,”
Energy
,
35
(
6
), pp.
2667
2673
.
78.
Kim
,
W.
,
Choi
,
J.
, and
Cho
,
H.
,
2013
, “
Performance Analysis of Hybrid Solar-Geothermal CO2 Heat Pump System for Residential Heating
,”
Renewable Energy
,
50
, pp.
596
604
.
79.
Busato
,
F.
,
Lazzarin
,
R.
, and
Noro
,
M.
,
2015
, “
Ground or Solar Source Heat Pump Systems for Space Heating: Which is Better? Energetic Assessment Based on a Case History
,”
Energy Build.
,
102
, pp.
347
356
.
80.
Busato
,
F.
,
Lazzarin
,
R. M.
, and
Noro
,
M.
,
2013
, “
Multisource Heat Pump System From Design to Operation: the Case Study of a new School Building
,”
Int. J. Low Carbon Technol.
,
8
(
2
), pp.
88
94
.
81.
Bakirci
,
K.
,
Ozyurt
,
O.
,
Comakli
,
K.
, and
Comakli
,
O.
,
2011
, “
Energy Analysis of a Solar-Ground Source Heat Pump System With Vertical Closed-Loop for Heating Applications
,”
Energy
,
36
(
5
), pp.
3224
3232
.
82.
Ozgener
,
O.
, and
Ozgener
,
L.
,
2015
, “
Modeling of Driveway as a Solar Collector for Improving Efficiency of Solar Assisted Geothermal Heat Pump System: A Case Study
,”
Renewable Sustainable Energy Rev.
,
46
, pp.
210
217
.
83.
Reda
,
F.
,
Arcuri
,
N.
,
Loiacono
,
P.
, and
Mazzeo
,
D.
,
2015
, “
Energy Assessment of Solar Technologies Coupled With a Ground Source Heat Pump System for Residential Energy Supply in Southern European Climates
,”
Energy
,
91
, pp.
294
305
.
84.
Fine
,
J. P.
,
Nguyen
,
H. V.
,
Friedman
,
J.
,
Leong
,
W. H.
, and
Dworkin
,
S. B.
,
2018
, “
A Simplified Ground Thermal Response Model for Analyzing Solar-Assisted Ground Source Heat Pump Systems
,”
Energy Convers. Manage.
,
165
, pp.
276
290
.
85.
De Carli
,
M.
,
Galgaro
,
A.
,
Pasqualetto
,
M.
, and
Zarrella
,
A.
,
2014
, “
Energetic and Economic Aspects of a Heating and Cooling District in a Mild Climate Based on Closed Loop Ground Source Heat Pump
,”
Appl. Therm. Eng.
,
71
(
2
), pp.
895
904
.
86.
Cai
,
B.
,
Li
,
H.
,
Hu
,
Y.
,
Liu
,
L.
,
Huang
,
J.
,
Lazzaretto
,
A.
, and
Zhang
,
G.
,
2017
, “
Theoretical and Experimental Study of Combined Heat and Power (CHP) System Integrated with Ground Source Heat Pump (GSHP)
,”
Appl. Therm. Eng.
,
127
, pp.
16
27
.
87.
Chen
,
Y.
,
Wang
,
J.
, and
Lund
,
P. D.
,
2020
, “
Thermodynamic Performance Analysis and Multi-Criteria Optimization of a Hybrid Combined Heat and Power System Coupled With Geothermal Energy
,”
Energy Convers. Manage.
,
210
, p.
112741
.
88.
Kang
,
S.
,
Li
,
H.
,
Lei
,
J.
,
Liu
,
L.
,
Cai
,
B.
, and
Zhang
,
G.
,
2015
, “
A new Utilization Approach of the Waste Heat With Mid-Low Temperature in the Combined Heating and Power System Integrating Heat Pump
,”
Appl. Energy
,
160
, pp.
185
193
.
89.
Li
,
H. Q.
,
Kang
,
S. S.
,
Yu
,
Z.
,
Cai
,
B.
, and
Zhang
,
G. Q.
,
2014
, “
A Feasible System Integrating Combined Heating and Power System With Ground-Source Heat Pump
,”
Energy
,
74
(
C
), pp.
240
247
.
90.
Dehghan B
,
B.
,
2017
, “
Performance Assessment of Ground Source Heat Pump System Integrated With Micro Gas Turbine: Waste Heat Recovery
,”
Energy Convers. Manage.
,
152
, pp.
328
341
.
91.
Li
,
H.
,
Zhang
,
X.
,
Liu
,
L.
,
Wang
,
S.
, and
Zhang
,
G.
,
2017
, “
Proposal and Research on a Combined Heating and Power System Integrating Biomass Partial Gasification With Ground Source Heat Pump
,”
Energy Convers. Manage.
,
145
, pp.
158
168
.
92.
Zhang
,
X.
,
Li
,
H.
,
Liu
,
L.
,
Bai
,
C.
,
Wang
,
S.
,
Song
,
Q.
,
Zeng
,
J.
,
Liu
,
X.
, and
Zhang
,
G.
,
2018
, “
Exergetic and Exergoeconomic Assessment of a Novel CHP System Integrating Biomass Partial Gasification with Ground Source Heat Pump
,”
Energy Convers. Manage.
,
156
, pp.
666
679
.
93.
Li
,
H.
,
Liang
,
F.
,
Guo
,
P.
,
He
,
C.
,
Li
,
S.
,
Zhou
,
S.
,
Deng
,
L.
,
Bai
,
C.
,
Zhang
,
X.
, and
Zhang
,
G.
,
2020
, “
Study on the Biomass-Based SOFC and Ground Source Heat Pump Coupling Cogeneration System
,”
Appl. Therm. Eng.
,
165
, p.
114527
.
94.
Kang
,
L.
,
Yang
,
J.
,
An
,
Q.
,
Deng
,
S.
,
Zhao
,
J.
,
Wang
,
H.
, and
Li
,
Z.
,
2017
, “
Effects of Load Following Operational Strategy on CCHP System with an Auxiliary Ground Source Heat Pump Considering Carbon tax and Electricity Feed in Tariff
,”
Appl. Energy
,
194
, pp.
454
466
.
95.
Zeng
,
R.
,
Li
,
H.
,
Liu
,
L.
,
Zhang
,
X.
, and
Zhang
,
G.
,
2015
, “
A Novel Method Based on Multi-Population Genetic Algorithm for CCHP–GSHP Coupling System Optimization
,”
Energy Convers. Manage.
,
105
, pp.
1138
1148
.
96.
Zeng
,
R.
,
Li
,
H.
,
Jiang
,
R.
,
Liu
,
L.
, and
Zhang
,
G.
,
2016
, “
A Novel Multi-Objective Optimization Method for CCHP–GSHP Coupling Systems
,”
Energy Build.
,
112
, pp.
149
158
.
97.
Kang
,
L.
,
Yang
,
J.
,
An
,
Q.
,
Deng
,
S.
,
Zhao
,
J.
,
Li
,
Z.
, and
Wang
,
Y.
,
2017
, “
Complementary Configuration and Performance Comparison of CCHP-ORC System With a Ground Source Heat Pump Under Three Energy Management Modes
,”
Energy Convers. Manage.
,
135
, pp.
244
255
.
98.
Ma
,
W.
,
Fang
,
S.
, and
Liu
,
G.
,
2017
, “
Hybrid Optimization Method and Seasonal Operation Strategy for Distributed Energy System Integrating CCHP, Photovoltaic and Ground Source Heat Pump
,”
Energy
,
141
, pp.
1439
1455
.
99.
Ren
,
F.
,
Wang
,
J.
,
Zhu
,
S.
, and
Chen
,
Y.
,
2019
, “
Multi-objective Optimization of Combined Cooling, Heating and Power System Integrated with Solar and Geothermal Energies
,”
Energy Convers. Manage.
,
197
, p.
111866
.
100.
Liu
,
W.
,
Chen
,
G.
,
Yan
,
B.
,
Zhou
,
Z.
,
Du
,
H.
, and
Zuo
,
J.
,
2015
, “
Hourly Operation Strategy of a CCHP System With GSHP and Thermal Energy Storage (TES) Under Variable Loads: A Case Study
,”
Energy Build.
,
93
, pp.
143
153
.
101.
Zeng
,
R.
,
Zhang
,
X.
,
Deng
,
Y.
,
Li
,
H.
, and
Zhang
,
G.
,
2019
, “
An off-Design Model to Optimize CCHP-GSHP System Considering Carbon Tax
,”
Energy Convers. Manage.
,
189
, pp.
105
117
.
102.
Wu
,
W.
,
Li
,
X.
,
You
,
T.
,
Wang
,
B.
, and
Shi
,
W.
,
2015
, “
Combining Ground Source Absorption Heat Pump with Ground Source Electrical Heat Pump for Thermal Balance, Higher Efficiency and Better Economy in Cold Regions
,”
Renewable Energy
,
84
, pp.
74
88
.
103.
Li
,
H.
,
Xu
,
W.
,
Yu
,
Z.
,
Wu
,
J.
, and
Sun
,
Z.
,
2017
, “
Application Analyze of a Ground Source Heat Pump System in a Nearly Zero Energy Building in China
,”
Energy
,
125
, pp.
140
151
.
104.
Fong
,
K. F.
,
Lee
,
C. K.
, and
Zhao
,
T. F.
,
2017
, “
Effective Design and Operation Strategy of Renewable Cooling and Heating System for Building Application in Hot-Humid Climate
,”
Sol. Energy
,
143
, pp.
1
9
.
105.
Zhang
,
S.
,
Jiang
,
Y.
,
Xu
,
W.
,
Li
,
H.
, and
Yu
,
Z.
,
2016
, “
Operating Performance in Cooling Mode of a Ground Source Heat Pump of a Nearly-Zero Energy Building in the Cold Region of China
,”
Renewable Energy
,
87
, pp.
1045
1052
.
106.
Alaica
,
A. A.
, and
Dworkin
,
S. B.
,
2017
, “
Characterizing the Effect of an off-Peak Ground pre-Cool Control Strategy on Hybrid Ground Source Heat Pump Systems
,”
Energy Build.
,
137
, pp.
46
59
.
107.
Emmi
,
G.
,
Bordignon
,
S.
,
Zarrella
,
A.
, and
De Carli
,
M.
,
2020
, “
A Dynamic Analysis of a SAGSHP System Coupled to Solar Thermal Collectors and Photovoltaic-Thermal Panels Under Different Climate Conditions
,”
Energy Convers. Manage.
,
213
, p.
112851
.
108.
Shu
,
G.
,
Che
,
J.
,
Tian
,
H.
,
Wang
,
X.
, and
Liu
,
P.
,
2017
, “
A Compressor-Assisted Triple-Effect H2O-LiBr Absorption Cooling Cycle Coupled with a Rankine Cycle Driven by High-Temperature Waste Heat
,”
Appl. Therm. Eng.
,
112
, pp.
1626
1637
.
109.
Hamdy
,
M.
,
Hasan
,
A.
, and
Siren
,
K.
,
2013
, “
A Multi-Stage Optimization Method for Cost-Optimal and Nearly-Zero-Energy Building Solutions in Line With the EPBD-Recast 2010
,”
Energy Build.
,
56
, pp.
189
203
.
110.
Enagi
,
I. I.
,
Al-attab
,
K. A.
, and
Zainal
,
Z. A.
,
2018
, “
Liquid Biofuels Utilization for Gas Turbines: A Review
,”
Renewable Sustainable Energy Rev.
,
90
, pp.
43
55
.
111.
Rad
,
F. M.
, and
Fung
,
A. S.
,
2016
, “
Solar Community Heating and Cooling System With Borehole Thermal Energy Storage—Review of Systems
,”
Renewable Sustainable Energy Rev.
,
60
, pp.
1550
1561
.
112.
Susastriawan
,
A. A. P.
,
Saptoadi
,
H.
, and
Purnomo
,
2017
, “
Small-scale Downdraft Gasifiers for Biomass Gasification: A Review
,”
Renewable Sustainable Energy Rev.
,
76
, pp.
989
1003
.
113.
Baruah
,
D.
, and
Baruah
,
D. C.
,
2014
, “
Modeling of Biomass Gasification: A Review
,”
Renewable Sustainable Energy Rev.
,
39
, pp.
806
815
.
114.
Wu
,
J.
,
Wang
,
J.
, and
Li
,
S.
,
2012
, “
Multi-Objective Optimal Operation Strategy Study of Micro-CCHP System
,”
Energy
,
48
(
1
), pp.
472
483
.
115.
Mago
,
P. J.
,
Chamra
,
L. M.
, and
Ramsay
,
J.
,
2010
, “
Micro-Combined Cooling, Heating and Power Systems Hybrid Electric-Thermal Load Following Operation
,”
Appl. Therm. Eng.
,
30
(
8–9
), pp.
800
806
.
116.
Fumo
,
N.
, and
Chamra
,
L. M.
,
2010
, “
Analysis of Combined Cooling, Heating, and Power Systems Based on Source Primary Energy Consumption
,”
Appl. Energy
,
87
(
6
), pp.
2023
2030
.
117.
Kong
,
X. Q.
,
Wang
,
R. Z.
,
Li
,
Y.
, and
Huang
,
X. H.
,
2009
, “
Optimal Operation of a Micro-Combined Cooling, Heating and Power System Driven by a gas Engine
,”
Energy Convers. Manage.
,
50
(
3
), pp.
530
538
.
118.
Cardona
,
E.
,
Piacentino
,
A.
, and
Cardona
,
F.
,
2006
, “
Matching Economical, Energetic and Environmental Benefits: An Analysis for Hybrid CHCP-Heat Pump Systems
,”
Energy Convers. Manage.
,
47
(
20
), pp.
3530
3542
.
119.
Jiang-Jiang
,
W.
,
Chun-Fa
,
Z.
, and
You-Yin
,
J.
,
2010
, “
Multi-Criteria Analysis of Combined Cooling, Heating and Power Systems in Different Climate Zones in China
,”
Appl. Energy
,
87
(
4
), pp.
1247
1259
.
120.
Wang
,
J.-J.
,
Jing
,
Y.-Y.
,
Zhang
,
C.-F.
, and
Zhai
,
Z. J.
,
2011
, “
Performance Comparison of Combined Cooling Heating and Power System in Different Operation Modes
,”
Appl. Energy
,
88
(
12
), pp.
4621
4631
.
121.
Zhang
,
C.
,
Yang
,
M.
,
Lu
,
M.
,
Shan
,
Y.
, and
Zhu
,
J.
,
2011
, “
Experimental Research on LiBr Refrigeration—Heat Pump System Applied in CCHP System
,”
Appl. Therm. Eng.
,
31
(
17–18
), pp.
3706
3712
.
122.
Wang
,
J.
,
Zhai
,
Z. J.
,
Jing
,
Y.
, and
Zhang
,
C.
,
2010
, “
Particle Swarm Optimization for Redundant Building Cooling Heating and Power System
,”
Appl. Energy
,
87
(
12
), pp.
3668
3679
.
123.
Ameri
,
M.
,
Behbahaninia
,
A.
, and
Tanha
,
A. A.
,
2010
, “
Thermodynamic Analysis of a tri-Generation System Based on Micro-gas Turbine with a Steam Ejector Refrigeration System
,”
Energy
,
35
(
5
), pp.
2203
2209
.
124.
Alahmer
,
A.
, and
Ajib
,
S.
,
2020
, “
Solar Cooling Technologies: State of art and Perspectives
,”
Energy Convers. Manage.
,
214
, p.
112896
.
125.
Yang
,
B.
,
Jiang
,
Y.
,
Fu
,
L.
, and
Zhang
,
S.
,
2018
, “
Experimental and Theoretical Investigation of a Novel Full-Open Absorption Heat Pump Applied to District Heating by Recovering Waste Heat of Flue Gas
,”
Energy Build.
,
173
, pp.
45
57
.
126.
Habibi
,
M.
,
Aligolzadeh
,
F.
, and
Hakkaki-Fard
,
A.
,
2020
, “
A Techno-Economic Analysis of Geothermal Ejector Cooling System
,”
Energy
,
193
, p.
116760
.
127.
Ibrahim
,
N. I.
,
Al-Sulaiman
,
F. A.
, and
Ani
,
F. N.
,
2018
, “
Solar Absorption Systems With Integrated Absorption Energy Storage–A Review
,”
Renewable Sustainable Energy Rev.
,
82
, pp.
1602
1610
.
You do not currently have access to this content.