Buoyancy-induced natural convective heat transfer along a vertical cylinder immersed in Water–Al2O3 nanofluids for various concentrations (0, 0.05, 0.1, 0.2, 0.4, 0.6 vol %) under constant heat flux condition was investigated experimentally and presented. Thermal stratification was observed outside the boundary layer in the ambient fluid after steady-state condition is achieved as the fluid temperature goes on increasing along the axial direction. Temperature variations of the cylinder along the axial direction and temperature variations of fluid in radial direction are shown graphically. It is observed that the temperatures of the cylinder and the fluid increases along the axial direction and the fluid temperature decreases in the radial direction. Experiments were conducted for various heat inputs (30 W, 40 W, 45 W, and 50 W) and volume concentrations and observed that the addition of alumina nanoparticles up to 0.1 vol % enhances the thermal performance and then the further addition of nanoparticles leads to deterioration. The maximum enhancement in the natural convection heat transfer performance is observed as 13.8%, i.e., heat transfer coefficient is increased from 382 W/m2 K to 435 W/m2 K at 0.1 vol % particle loading.

References

1.
Choi
,
S. U. S.
, and Eastman, J. A.,
1995
, “
Enhancing Thermal Conductivity of Fluids With Nanoparticles
,”
ASME
International Mechanical Engineering Congress and Exposition, San Fransisco, CA, Nov. 12–17, pp.
99
105
.
2.
Agwu Nnanna
,
A. G.
,
2007
, “
Experimental Model of Temperature-Driven Nanofluid
,”
ASME J. Heat Transfer
,
129
(
6
), pp.
697
704
.
3.
Yanwei
,
H.
,
Yurong
,
H.
,
Shufu
,
W.
,
Qizhi
,
W.
, and
Inaki
,
S. H.
,
2014
, “
Experimental and Numerical Investigation on Natural Convection Heat Transfer of TiO2–Water Nanofluids in a Square Enclosure
,”
ASME J. Heat Transfer
,
136
(2), p. 022502.
4.
Mahmoud
,
R. K. M.
, and
Seyed
,
G. E.
,
2011
, “
Free Convection Heat Transfer of Non Newtonian Nanofluids Under Constant Heat Flux Condition
,”
Int. Commun. Heat Mass Transfer
,
38
(
10
), pp.
1449
1454
.
5.
Yanwei
,
H.
,
Yurong
,
H.
,
Cong
,
Q.
,
Baocheng
,
J.
, and
Inaki
,
S. H.
,
2014
, “
Experimental and Numerical Study of Natural Convection in a Square Enclosure Filled With Nanofluid
,”
Int. J. Heat Mass Transfer
,
78
, pp.
380
392
.
6.
Calvin
,
H. L.
, and
Peterson
,
G. P.
,
2010
, “
Experimental Studies of Natural Convection Heat Transfer of Al2O3/DI Water Nanoparticle Suspensions (Nanofluids)
,”
Adv. Mech. Eng.
,
2
, pp.
1
10
.
7.
Ho
,
C. J.
,
Liu
,
W. K.
,
Chang
,
Y. S.
, and
Lin
,
C. C.
,
2010
, “
Natural Convection Heat Transfer of Alumina-Water Nanofluid in Vertical Square Enclosures: An Experimental Study
,”
Int. J. Therm. Sci.
,
49
(
8
), pp.
1345
1353
.
8.
Wen
,
D.
, and
Ding
,
Y.
,
2005
, “
Formulation of Nanofluids for Natural Convective Heat Transfer Applications
,”
Int. J. Heat Fluid Flow
,
26
(
6
), pp.
855
864
.
9.
Dongsheng
,
W.
, and
Yulong
,
D.
,
2006
, “
Natural Convective Heat Transfer of Suspensions of Titanium Dioxide Nanoparticles (Nanofluids)
,”
IEEE Trans. Nanotechnol.
,
5
(
3
), pp.
220
227
.
10.
Nandy
,
P.
, and
Wilfried
,
R.
,
2003
, “
Natural Convection of Nano-Fluids
,”
Int. J. Heat Mass Transfer
,
39
(
8–9
), pp.
775
784
.
11.
Prasad
,
L. S. V.
,
Subrahmanyam
,
T.
,
Sharma
,
P. K.
,
Dharmarao
,
V.
, and
Sharma
,
K. V.
,
2013
, “
Turbulent Natural Convection Heat Transfer in Nanofluids Thermal Stratification–An Experimental Study
,”
Int. J. Heat Technol.
,
31
(1), pp.
63
72
.
12.
Rajesh
,
C.
, and
Sudhakar
,
S.
,
2016
, “
Aspect Ratio Dependence of Turbulent Natural Convection in Al2O3/Water Nanofluids
,”
Appl. Therm. Eng.
,
108
, pp.
1095
1104
.
13.
Hadi
,
G.
,
Mohsen
,
S.
, and
Josua
,
P. M.
,
2016
, “
Experimental Investigation on Cavity Flow Natural Convection of Al2O–Water Nanofluids
,”
Int. Commun. Heat Mass Transfer
,
76
, pp.
316
324
.
14.
Seyyadi
,
S. M.
,
Dayyan
,
M.
,
Soheil
,
S.
, and
Ghasemi
,
2015
, “
Natural Convection Heat Transfer Under Constant Heat Flux Wall in a Nanofluid Filled Annulus Enclosure
,”
Ain Shams Eng. J.
,
6
(
1
), pp.
267
280
.
15.
Etaig
,
S.
,
Hasan
,
R.
, and
Perera
,
N.
,
2015
, “
Investigation of Enhancement of Heat Transfer in Natural Convection Utilizing of Nanofluids
,”
Int. J. Mech., Aerosp., Ind., Mechatronic Manuf. Eng.
,
9
(
2
), pp.
390
395
.
16.
Xiangyin
,
M.
, and
Yan
,
L.
,
2015
, “
Numerical Study of Natural Convection in a Horizontal Cylinder Filled With Water-Based Alumina Nanofluid
,”
Nanoscale Res. Lett.
,
10
, p. 142.
17.
Omer
,
A. A.
,
Nor
,
A. C. S.
, and
Dawood
,
H. K.
,
2014
, “
Natural Convection Heat Transfer in Horizontal Concentric Annulus Between Outer Cylinder and Inner Flat Tube Using Nanofluid
,”
Int. Commun. Heat Mass Transfer
,
57
, pp.
65
71
.
18.
Gyeong-Uk
,
K.
, and
Bum-Jin
,
C.
,
2014
, “
Natural Convection Heat Transfer on a Vertical Cylinder Submerged in Fluids Having High Prandtl Number
,”
Int. J. Heat Mass Transfer
,
79
, pp.
4
11
.
19.
Yong
,
G. P.
,
Man
,
Y. H.
,
Changyoung
,
C.
, and
Jaehyun
,
P.
,
2014
, “
Natural Convection in a Square Enclosure With Two Inner Circular Cylinders Positioned at Different Vertical Locations
,”
Int. J. Heat Mass Transfer
,
77
, pp.
501
518
.
20.
Raja
,
M.
,
Vijayan
,
R.
,
Dineshkumar
,
P.
, and
Venkatesan
,
M.
,
2016
, “
Review on Nanofluids Characterization, Heat Transfer Characteristics and Applications
,”
Renewable Sustainable Energy Rev.
,
64
, pp.
163
173
.
21.
Dhinesh
,
K. D.
, and
Valan
,
A. A.
,
2016
, “
A Review on Preparation, Characterization, Properties and Applications of Nanofluids
,”
Renewable Sustainable Energy Rev.
,
60
, pp.
21
40
.
22.
Das
,
S. K.
,
Stephen
,
U. S. C.
, and
Hrishikesh
,
E. P.
,
2006
, “
Heat Transfer in Nanofluids—A Review
,”
Heat Transfer Eng.
,
27
(
10
), pp.
3
19
.
23.
Xiang-Qi
,
W.
, and
Arun
,
S. M.
,
2008
, “
A Review on Nanofluids—Part II: Experiments and Applications
,”
Braz. J. Chem. Eng.
,
25
(
4
), pp.
631
648
.
24.
Wei
,
Y.
, and
Huaqing
,
X.
,
2012
, “
A Review on Nanofluids: Preparation, Stability Mechanisms and Applications
,”
J. Nanomater.
,
2012
, p. 435873.
25.
Rodrigo
,
V. P.
, and
Flavio
,
A. S. F.
,
2016
, “
Review of the Mechanisms Responsible for Heat Transfer Enhancement Using Nanofluids
,”
Appl. Therm. Eng.
,
108
, pp.
720
739
.
26.
Babita
,
Sharma
,
S. K.
, and
Shipra
,
M. G.
,
2016
, “
Preparation and Evaluation of Stable Nanofluids for Heat Transfer Application: A Review
,”
Exp. Therm. Fluid Sci.
,
79
, pp.
202
212
.
27.
Suhaib
,
U. I.
,
Rajashekhar
,
P.
, and
Narahari
,
M.
,
2014
, “
Preparation, Sedimentation, and Agglomeration of Nanofluids
,”
Chem. Eng. Technol.
,
37
(
12
), pp.
2011
2021
.
28.
Paul
,
G.
,
Chopkar
,
M.
,
Manna
,
I.
, and
Das
,
P. K.
,
2010
, “
Techniques for Measuring the Thermal Conductivity of Nanofluids: A Review
,”
Renewable Sustainable Energy Rev.
,
14
(
7
), pp.
1913
1924
.
29.
Zoubida
,
H.
,
Hakan
,
F. O.
,
Eiyad
,
A. N.
, and
Amina
,
M.
,
2012
, “
A Review on Natural Convective Heat Transfer of Nanofluids
,”
Renewable Sustainable Energy Rev.
,
16
(
7
), pp.
5363
5378
.
30.
Ravi Babu
,
S.
, and
Sambasivarao
,
G.
,
2016
, “
Buoyancy Induced Natural Convective Heat Transfer Along a Vertical Cylinder Under a Constant Heat Flux
,”
Int. J. Chem. Sci.
,
14
(
4
), pp.
2763
2774
.
31.
Mahbubul
,
I. M.
,
Saidur
,
R.
,
Amalina
,
M. A.
,
Elcioglu
,
E. B.
, and
Okutucu-Ozyurt
,
T.
,
2015
, “
Effective Ultrasonication Process for Better Colloidal Dispersion of Nanofluid
,”
Ultrason. Sonochem.
,
26
, pp.
361
369
.
32.
Mingzheng
,
Z.
,
Guodong
,
X.
,
Jian
,
L.
,
Lei
,
C.
, and
Lijun
,
Z.
,
2012
, “
Analysis of Factors Influencing Thermal Conductivity and Viscosity in Different Kinds of Surfactant Solutions
,”
Exp. Therm. Fluid Sci.
,
36
, pp.
22
29
.
33.
Arshad
,
M.
,
Inayat
,
M. H.
, and
Chugtai
,
I. R.
,
2009
, “
Heat Transfer Through Vertical Cylinder in Stationary Fluid
,”
Nucleus
,
46
(
3
), pp.
177
181
.
34.
Mc.Adams
,
W.
,
1954
,
Heat Transmission
,
McGraw-Hill
,
New York
.
35.
Maxwell
,
J. C.
,
1904
,
A Treatise on Electricity and Magnetism
, 2nd ed.,
Oxford University Press
,
Cambridge, UK
.
You do not currently have access to this content.