Abstract

The present work demonstrates the use of manifold microchannel technology in conjunction with conventional macrogeometries to achieve superior performance compared to traditional heat exchangers. A novel tubular manifold heat exchanger is designed using three-dimensional (3D) printed manifold and conventional double enhanced tube. The experiments are performed using water as the working fluid and the manifold side heat transfer coefficient up to 9538 Wm−2K−1 with a low flowrate of 4.25 lpm is achieved with as low pressure drop as 323 Pa. A comparison with respect to thermal hydraulic performance of the results with a plate heat exchanger shows clear advantage of the proposed exchanger. Overall, microscale heat transfer characteristics are obtained by using relatively simple and economical fabrication techniques.

References

1.
Shah
,
R. K.
, and
Webb
,
R.
,
1983
, “
Compact and Enhanced Heat Exchangers: Heat Exchangers: Theory and Practice
,”
J.
Taborek
G. F.
Hewitt
, and
N.
Afgan
, eds., Hemisphere Publishing Corporation, Washington, DC, pp.
425
468
.
2.
Manglik
,
R. M.
,
Sunden
,
B.
, and
Wang
,
L.
,
2007
,
Plate Heat Exchangers: Design, Applications and Performance
,
WIT Press
, Southampton, UK.
3.
Agostini
,
B.
,
Fabbri
,
M.
,
Park
,
J. E.
,
Wojtan
,
L.
,
Thome
,
J. R.
, and
Michel
,
B.
,
2007
, “
State of the Art of High Heat Flux Cooling Technologies
,”
Heat Transfer Eng.
,
28
(
4
), pp.
258
281
.
4.
Tuckerman
,
D. B.
, and
Pease
,
R. F. W.
,
1981
, “
High-Performance Heat Sinking for VLSI
,”
IEEE Electron Device Lett.
,
2
(
5
), pp.
126
129
.
5.
Adams
,
T. M.
,
Abdel-Khalik
,
S. I.
,
Jeter
,
S. M.
, and
Qureshi
,
Z. H.
,
1998
, “
An Experimental Investigation of Single-Phase Forced Convection in Microchannels
,”
Int. J. Heat Mass Transfer
,
41
(
6–7
), pp.
851
857
.
6.
Adams
,
T. M.
,
Dowling
,
M. F.
,
Abdel-Khalik
,
S. I.
, and
Jeter
,
S. M.
,
1999
, “
Applicability of Traditional Turbulent Single-Phase Forced Convection Correlations to Non-Circular Microchannels
,”
Int. J. Heat Mass Transfer
,
42
(
23
), pp.
4411
4415
.
7.
Rahman
,
M. M.
,
2000
, “
Measurements of Heat Transfer in Microchannel Heat Sinks
,”
Int. Commun. Heat Mass Transfer
,
27
(
4
), pp.
495
506
.
8.
Owhaib
,
W.
, and
Palm
,
B.
,
2004
, “
Experimental Investigation of Single-Phase Convective Heat Transfer in Circular Microchannels
,”
Exp. Therm. Fluid Sci.
,
28
(
2–3
), pp.
105
110
.
9.
Kandlikar
,
S. G.
,
Garimella
,
S.
,
Li
,
D.
,
Colin
,
S.
, and
King
,
M. R.
,
2006
, “
Heat Transfer and Fluid Flow in Minichannels and Microchannels
,” Elsevier, San Diego, CA.
10.
Lee
,
P. S.
, and
Garimella
,
S. V.
,
2006
, “
Thermally Developing Flow and Heat Transfer in Rectangular Microchannels of Different Aspect Ratios
,”
Int. J. Heat Mass Transfer
,
49
(
17–18
), pp.
3060
3067
.
11.
Kandlikar
,
S. G.
,
Colin
,
S.
,
Peles
,
Y.
,
Garimella
,
S.
,
Pease
,
R. F.
,
Brandner
,
J. J.
, and
Tuckerman
,
D. B.
,
2013
, “
Heat Transfer in Microchannels-2012 Status and Research Needs
,”
ASME J. Heat Transfer
,
135
(
9
), p.
91001
.
12.
Harpole
,
G. M.
, and
Eninger
,
J. E.
,
1991
, “
Micro-Channel Heat Exchanger Optimization
,”
Seventh IEEE Semiconductor Thermal Measurement and Management Symposium
, pp.
59
63
.
13.
Copeland
,
D.
,
Behnia
,
M.
, and
Nakayama
,
W.
,
1997
, “
Manifold Microchannel Heat Sinks: Isothermal Analysis
,”
IEEE Trans. Compon. Packag. Manuf. Technol.: Part A
,
20
(
2
), pp.
96
102
.
14.
Poh
,
S. T.
, and
Ng
,
E. Y. K.
,
1998
, “
Heat Transfer and Flow Issues in Manifold Microchannel Heat Sinks: A CFD Approach
,”
Second Electronics Packaging Technology Conference
, Singapore, Dec. 10, pp.
246
250
.
15.
Jankowski
,
N. R.
,
Everhart
,
L.
,
Morgan
,
B.
,
Geil
,
B.
, and
McCluskey
,
P.
,
2007
, “
Comparing Microchannel Technologies to Minimize the Thermal Stack and Improve Thermal Performance in Hybrid Electric Vehicles
,”
IEEE
Vehicle Power and Propulsion Conference
, Arlington, TX, Sept. 9–12, pp.
124
130
.
16.
Kermani
,
E.
,
Dessiatoun
,
S.
,
Shooshtari
,
A.
, and
Ohadi
,
M. M.
,
2009
, “
Experimental Investigation of Heat Transfer Performance of a Manifold Microchannel Heat Sink for Cooling of Concentrated Solar Cells
,”
59th Electronic Components and Technology Conference
, San Diego, CA, May 26–29, pp.
453
459
.
17.
Escher
,
W.
,
Michel
,
B.
, and
Poulikakos
,
D.
,
2010
, “
A Novel High Performance, Ultra Thin Heat Sink for Electronics
,”
Int. J. Heat Fluid Flow
,
31
(
4
), pp.
586
598
.
18.
Kim
,
Y. H.
,
Chun
,
W. C.
,
Kim
,
J. T.
,
Pak
,
B. C.
, and
Baek
,
B. J.
,
1998
, “
Forced Air Cooling by Using Manifold Microchannel Heat Sinks
,”
KSME Int. J.
,
12
(
4
), pp.
709
718
.
19.
Ryu
,
J. H.
,
Choi
,
D. H.
, and
Kim
,
S. J.
,
2003
, “
Three-Dimensional Numerical Optimization of a Manifold Microchannel Heat Sink
,”
Int. J. Heat Mass Transfer
,
46
(
9
), pp.
1553
1562
.
20.
Wang
,
Y.
, and
Ding
,
G.-F.
,
2008
, “
Numerical Analysis of Heat Transfer in a Manifold Microchannel Heat Sink With High Efficient Copper Heat Spreader
,”
Microsyst. Technol.
,
14
(
3
), pp.
389
395
.
21.
Cetegen
,
E.
,
2010
, “
Force Fed Microchannel High Heat Flux Cooling Utilizing Microgrooved Surfaces
,”
Theses
, University of Maryland, College Park, MDhttps://drum.lib.umd.edu/handle/1903/10286.
22.
Arie
,
M. A.
,
Shooshtari
,
A. H.
,
Dessiatoun
,
S. V.
,
Al-Hajri
,
E.
, and
Ohadi
,
M. M.
,
2015
, “
Numerical Modeling and Thermal Optimization of a Single-Phase Flow Manifold-Microchannel Plate Heat Exchanger
,”
Int. J. Heat Mass Transfer
,
81
, pp.
478
489
.
23.
Andhare
,
R. S.
,
Shooshtari
,
A.
,
Dessiatoun
,
S. V.
, and
Ohadi
,
M. M.
,
2016
, “
Heat Transfer and Pressure Drop Characteristics of a Flat Plate Manifold Microchannel Heat Exchanger in Counter Flow Configuration
,”
Appl. Therm. Eng.
,
96
, pp.
187
189
.
24.
Jha
,
V.
,
Dessiatoun
,
S.
,
Shooshtari
,
A.
,
Al-hajri
,
E. S.
, and
Ohadi
,
M. M.
,
2015
, “
Experimental Characterization of a Nickel Alloy-Based Manifold-Microgroove Evaporator
,”
Heat Transfer Eng.
,
36
(
1
), pp.
33
42
.
25.
Bejan
,
A.
, and
Errera
,
M. R.
,
2000
, “
Convective Trees of Fluid Channels for Volumetric Cooling
,”
Int. J. Heat Mass Transfer
,
43
(
17
), pp.
3105
3118
.
26.
Chen
,
Y.
, and
Cheng
,
P.
,
2002
, “
Heat Transfer and Pressure Drop in Fractal Tree-like Microchannel Nets
,”
Int. J. Heat Mass Transfer
,
45
(
13
), pp.
2643
2648
.
27.
Wang
,
X. Q.
,
Mujumdar
,
A. S.
, and
Yap
,
C.
,
2006
, “
Thermal Characteristics of Tree-Shaped Microchannel Nets for Cooling of a Rectangular Heat Sink
,”
Int. J. Therm. Sci.
,
45
(
11
), pp.
1103
1112
.
28.
Escher
,
W.
,
Michel
,
B.
, and
Poulikakos
,
D.
,
2009
, “
Efficiency of Optimized Bifurcating Tree-like and Parallel Microchannel Networks in the Cooling of Electronics
,”
Int. J. Heat Mass Transfer
,
52
(
5–6
), pp.
1421
1430
.
29.
Heymann
,
D.
,
Pence
,
D.
, and
Narayanan
,
V.
,
2010
, “
Optimization of Fractal-like Branching Microchannel Heat Sinks for Single-Phase Flows
,”
Int. J. Therm. Sci.
,
49
(
8
), pp.
1383
1393
.
30.
Pence
,
D.
,
2010
, “
The Simplicity of Fractal-like Flow Networks for Effective Heat and Mass Transport
,”
Exp. Therm. Fluid Sci.
,
34
(
4
), pp.
474
486
.
31.
Daniels
,
B. J.
,
Liburdy
,
J. A.
, and
Pence
,
D. V.
,
2011
, “
Experimental Studies of Adiabatic Flow Boiling in Fractal-Like Branching Microchannels
,”
Exp. Therm. Fluid Sci.
,
35
(
1
), pp.
1
10
.
32.
Ghodoossi
,
L.
,
2005
, “
Thermal and Hydrodynamic Analysis of a Fractal Microchannel Network
,”
Energy Convers. Manage.
,
46
(
5
), pp.
771
788
.
33.
Goh
,
A. L.
,
Ooi
,
K. T.
, and
Stimming
,
U.
,
2014
, “
Nature-Inspired Enhanced Microscale Heat Transfer in Macro Geometry
,”
Intersociety Conference on Thermomechanical Phenomena in Electronic Systems
, San Diego, CA, Oct. 19–22, pp.
397
403
.
34.
Goh
,
A. L.
,
Han
,
B.
, and
Ooi
,
K. T.
,
2016
, “
Experimental Study of Nature-Inspired Enhanced Microscale Heat Transfer
,” Fifth International Conference on Micro/Nanoscale Heat and Mass Transfer
, Singapore, Jan. 4–6, pp.
1
5
.
35.
Morini
,
G. L.
,
2004
, “
Single-Phase Convective Heat Transfer in Microchannels: A Review of Experimental Results
,”
Int. J. Therm. Sci.
,
43
(
7
), pp.
631
651
.
36.
Ashman
,
S.
, and
Kandlikar
,
S. G.
,
2006
, “
A Review of Manufacturing Processes for Microchannel Heat Exchanger Fabrication
,”
ASME
Paper No. ICNMM2006-96121
.
37.
Kong
,
K. S.
, and
Ooi
,
K. T.
,
2013
, “
A Numerical and Experimental Investigation on Microscale Heat Transfer Effect in the Combined Entry Region in Macro Geometries
,”
Int. J. Therm. Sci.
,
68
, pp.
8
19
.
38.
Ohadi
,
M.
,
Choo
,
K.
,
Dessiatoun
,
S.
, and
Cetegen
,
E.
,
2013
, “
Next Generation Microchannel Heat Exchangers
,” Springer-Verlag, New York, p. 116.
39.
Webb
,
R. L.
,
Narayanamurthy
,
R.
, and
Thors
,
P.
,
2000
, “
Heat Transfer and Friction Characteristics of Internal Helical-Rib Roughness
,”
ASME J. Heat Transfer
,
122
(
1
), pp.
134
142
.
40.
Fernández-Seara
,
J.
,
Uhía
,
F. J.
, and
Sieres
,
J.
,
2007
, “
Laboratory Practices With the Wilson Plot Method
,”
Exp. Heat Transfer
,
20
(
2
), pp.
123
135
.
41.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
(
1
), pp.
3
17
.
42.
Dittus
,
F. W.
, and
Boelter
,
L. M. K.
,
1930
, “
Heat Transfer in Automobile Radiators of the Tubular Type
,”
Univ. California Publ. Eng.
,
2
(13), pp.
443
461
.
43.
Petukhov
,
B. S.
,
1970
, “
Heat Transfer and Friction in Turbulent Pipe Flow With Variable Physical Properties
,”
Adv. Heat Transfer
,
6
(
C
), pp.
503
564
.
44.
Ayub
,
Z. H.
,
2003
, “
Literature Survey and New Heat Transfer and Pressure Drop Correlations for Refrigerant Evaporators
,”
Heat Transfer Eng.
,
24
(
5
), pp.
3
16
.
45.
Sadik Kakaç
,
H. L.
, and
Anchasa
,
P.
,
2012
, “
Classification of Heat Exchangers
,”
Heat Exchangers: Selection, Rating, and Thermal Design
,
CRC Press
, Washington, DC, pp.
9
46
.
46.
Talik
,
A. C.
,
Fletcher
,
L. S.
,
Anand
,
N. K.
, and
Swanson
,
L. W.
, 1995, “
Heat Transfer and Pressure Drop Characteristics of a Plate Heat Exchanger Using a Propylene Glycol–Water Mixture as the Working Fluid
,” 30th National conference, Portland, OR, Aug. 6–8, pp.
83
88
.
47.
Buonopane
,
R. A.
,
Troupe
,
R. A.
, and
Morgan
,
J. C.
,
1963
, “
Heat Transfer Design Methods for Plate Heat Exchangers
,”
Chem. Eng. Prog.
,
59
(
7
), pp.
57
61
.
48.
Jackson
,
B. W.
, and
Troupe
,
R. A.
,
1964
, “
Laminar Flow in a Plate Heat Exchanger
,”
Chem. Eng. Prog.
,
60
(
7
), pp.
65
67
.
You do not currently have access to this content.