Abstract

To improve air pollution, we must reduce soot particulates in vehicle exhaust gas, which are inevitably harmful to the environment as well as to human health. Many countries are setting new regulations of nanoscale particle emission. Then, a ceramic porous filter such as diesel particulate filters (DPFs) has been developed. However, as more particles are trapped within their wall pores, the pressure difference (drop) across the filter increases. Resultantly, this situation could worsen the fuel efficiency, simultaneously with less torque. Usually, the filter regeneration process for particle oxidation inside the filter should be periodically needed. Thus, a filter with lower pressure drop would be preferable. In the current stage, the responses of the pressure drop during both particle filtration and oxidation are not fully understood. This is because these are the small-scale processes, and we cannot observe the internal physical phenomenon experimentally. In this paper, focusing on the exhaust flow with soot particles, the filtration was numerically simulated by a so-called lattice Boltzmann method (LBM). Here, the time-variation of the filter-back pressure was evaluated, which is important for the transport phenomena in the porous filter. For comparison, the pressure drop during the filter regeneration was also simulated to show the different pressure response affected by the soot oxidation zone.

References

1.
Yezerets
,
A.
,
Currier
,
N. W.
,
Kim
,
D. H.
,
Eadler
,
H. A.
,
Epling
,
W. S.
, and
Peden
,
C. H. F.
,
2005
, “
Differential Kinetic Analysis of Diesel Particulate Matter (Soot) Oxidation by Oxygen Using a Step-Response Technique
,”
Appl. Catal. B
,
61
(
1–2
), pp.
120
129
. 10.1016/j.apcatb.2005.04.014
2.
Kennedy
,
I. M.
,
2007
, “
The Health Effects of Combustion-Generated Aerosols
,”
Proc. Combust. Inst.
,
31
(
2
), pp.
2757
2770
. 10.1016/j.proci.2006.08.116
3.
Johnson
,
T. V.
,
2015
, “
Review of Vehicular Emissions Trends
,”
SAE
Paper No. 2015-01-0993. 10.4271/2015-01-0993
4.
Sumita
,
D.
, and
Rahul
,
D. M.
,
2018
, “
Effects of Iron Nanoparticle Fuel Additive on the Performance and Exhaust Emissions of a Compression Ignition Engine Fueled With Diesel and Biodiesel
,”
ASME J. Therm. Sci. Eng. Appl.
,
10
(
4
), p.
041002
. 10.1115/1.4038708
5.
Ibrahim
,
F.
,
Wan
,
M. W. M. F.
,
Abdullah
,
S.
, and
Abu
,
M. M. R.
,
2016
, “
Soot Particle Measurement in Engine Cylinder: A Review
,”
J. Teknol.
,
78
(
8
), pp.
187
195
. 10.11113/jt.v78.5140
6.
Ibrahim
,
F.
,
Wan
,
M. W. M. F.
,
Abdullah
,
S.
, and
Abu
,
M. M. R.
,
2018
, “
Study on Soot Mass Fraction and Size Distribution in a Direct Injection Diesel Engine Using Particulate Size Mimic Soot Model
,”
ASME J. Thermal Sci. Eng. Appl.
,
11
(
1
), p.
011005
. 10.1115/1.4040993
7.
Sergey
,
U.
,
Harald
,
V.
,
Bemnes
,
N. J.
, and
Erik
,
H.
,
2013
, “
Effects of High Sulphur Content in Marine Fuels on Particulate Matter Emission Characteristics
,”
J. Mar. Eng. Technol.
,
12
(
3
), pp.
30
39
. 10.1080/20464177.2013.11020283
8.
Yang
,
B. J.
,
Mao
,
S.
,
Altin
,
O.
,
Feng
,
Z. G.
, and
Michaelides
,
E. E.
,
2011
, “
Condensation Analysis of Exhaust Gas Recirculation System for Heavy-Duty Trucks
,”
ASME J. Therm. Sci. Eng. Appl.
,
3
(
4
), p.
041007
. 10.1115/1.4004745
9.
Tsuneyoshi
,
K.
,
Takagi
,
O.
, and
Yamamoto
,
K.
,
2011
, “
Effects of Washcoat on Initial PM Filtration Efficiency and Pressure Drop in SiC DPF
,”
SAE
Paper No. 2011-01-0817. 10.4271/2011-01-0817
10.
Yamamoto
,
K.
,
Takada
,
N.
, and
Misawa
,
M.
,
2005
, “
Combustion Simulation With Lattice Boltzmann Method in a Three-Dimensional Porous Structure
,”
Proc. Comb. Inst.
,
30
(
1
), pp.
1509
1515
. 10.1016/j.proci.2004.08.030
11.
Tzamkiozis
,
T.
,
Ntziachristos
,
L.
, and
Samaras
,
Z.
,
2010
, “
Diesel Passenger Car PM Emissions: From Euro 1 to Euro 4 With Particle Filter
,”
Atmos. Environ.
,
44
(
7
), pp.
909
916
. 10.1016/j.atmosenv.2009.12.003
12.
Sarli
,
V. D.
,
Landi
,
G.
,
Lisi
,
L.
,
Saliva
,
A.
, and
Benedetto
,
A. D.
,
2016
, “
Catalytic Diesel Particulate Filters With Highly Dispersed Ceria: Effect of the Soot-Catalyst Contact on the Regeneration Performance
,”
Atmos. Environ.
,
44
, pp.
116
124
. 10.1016/j.apcatb.2016.01.073
13.
Yamamoto
,
K.
,
Satake
,
S.
, and
Yamashita
,
H.
,
2009
, “
Microstructure and Particle-Laden Flow in Diesel Particulate Filter
,”
Int. J. Therm. Sci.
,
48
(
2
), pp.
303
307
. 10.1016/j.ijthermalsci.2008.08.009
14.
Yamamoto
,
K.
,
Nakamura
,
M.
,
Yane
,
H.
, and
Yamashita
,
H.
,
2010
, “
Simulation on Catalytic Reaction in Diesel Particulate Filter
,”
Catal. Today
,
153
(
3–4
), pp.
118
124
. 10.1016/j.cattod.2010.02.064
15.
Yamauchi
,
K.
,
Takada
,
N.
,
Misawa
,
M.
,
Furutani
,
H.
, and
Shinozaki
,
O.
,
2011
, “
Lattice Boltzmann Simulation on Continuously Regenerating Diesel Filter
,”
Philos. Trans. A
,
369
(
1945
), pp.
2584
2591
. 10.1098/rsta.2011.0031
16.
Yamamoto
,
K.
, and
Ohori
,
S.
,
2013
, “
Simulation on Flow and Soot Deposition in Diesel Particulate Filter
,”
Int. J. Eng. Res.
,
14
(
4
), pp.
333
340
. 10.1177/1468087412456687
17.
Yamamoto
,
K.
, and
Nakamura
,
M.
,
2011
, “
Simulation on Flow and Heat Transfer in Diesel Particulate Filter
,”
ASME J. Heat Transfer
,
133
(
6
), pp.
1
6
. 10.1109/THETA.2008.5167171
18.
Kong
,
H.
, and
Yamamoto
,
K.
,
2018
, “
Simulation on Soot Deposition in In-Wall and On-Wall Catalyzed Diesel Particulate Filters
,”
Catal. Today
(in press). 10.1016/j.cattod.2018.07.022
19.
Chen
,
S.
, and
Doolen
,
G. D.
,
1998
, “
Lattice Boltzmann Method for Fluid Flows
,”
Annu. Rev. Fluid Mech.
,
30
(
1
), pp.
329
364
. 10.1146/annurev.fluid.30.1.329
20.
Yamamoto
,
K.
,
He
,
X.
, and
Doolen
,
G. D.
,
2002
, “
Simulation of Combustion Field With Lattice Boltzmann Method
,”
J. Stat. Phys.
,
107
(
1/2
), pp.
367
383
. 10.1023/A:1014583226083
21.
Tsutahara
,
M.
,
Kataoka
,
T.
,
Shikata
,
K.
, and
Takada
,
N.
,
2008
, “
New Model and Scheme for Compressible Fluids of the Finite Difference Lattice Boltzmann Method and Direct Simulations of Aerodynamic Sound
,”
Comput. Fluids
,
37
(
1
), pp.
79
89
. 10.1016/j.compfluid.2005.12.002
22.
Ohta
,
M.
,
Nakamura
,
T.
,
Yoshida
,
Y.
, and
Matsukuma
,
Y.
,
2011
, “
Lattice Boltzmann Simulations of Viscoplastic Fluid Flows Through Complex Flow Channels
,”
J. Non-Newtonian Fluid Mech.
,
166
(
7–8
), pp.
404
412
. 10.1016/j.jnnfm.2011.01.011
23.
Abdallaoui
,
M. E.
,
Hasnaoui
,
M.
, and
Amahmid
,
A.
,
2015
, “
Numerical Simulation of Natural Convection Between a Decentered Triangular Heating Cylinder and a Square Outer Cylinder Filled With a Pure Fluid or a Nanofluid Using the Lattice Boltzmann Method
,”
Powder Technol.
,
277
, pp.
193
205
. 10.1016/j.powtec.2015.02.042
24.
Seta
,
T.
,
Hayashi
,
K.
, and
Tomiyama
,
A.
,
2018
, “
Analytical and Numerical Studies of the Boundary Slip in the Immersed Boundary-Thermal Lattice Boltzmann Method
,”
Int. J. Numer. Methods Fluids
,
86
(
7
), pp.
454
490
. 10.1002/fld.4462
25.
Qian
,
Y. H.
,
D'Humie'res
,
D.
, and
Lallemand
,
P.
,
1992
, “
Lattice BGK Models for Navier–Stokes Equation
,”
Europhys. Lett.
,
17
(
6
), pp.
479
484
. 10.1209/0295-5075/17/6/001
26.
Konstandopoulos
,
A. G.
, and
Skaperdas
,
E.
,
2002
, “
Microstructural Properties of Soot Deposits in Diesel Particulate Traps
,”
SAE
Paper No. 2002-01-1015. 10.4271/2002-01-1015
27.
Yamamoto
,
K.
, and
Yamauchi
,
K.
,
2013
, “
Numerical Simulation of Continuously Regenerating Diesel Particulate Filter
,”
Proc. Combus. Inst.
,
34
(
2
), pp.
3083
3090
. 10.1016/j.proci.2012.06.117
28.
Lee
,
K. B.
,
Thring
,
M. W.
, and
Beer
,
J. M.
,
1962
, “
On the Rate of Combustion of Soot in a Laminar Soot Flame
,”
Combust. Flame
,
6
, pp.
137
145
. 10.1016/0010-2180(62)90082-2
You do not currently have access to this content.