Abstract

The rapid rate of improvement in electronic devices has led to an increased demand for effective cooling techniques. The purpose of this study is to investigate the heat transfer characteristics of an aluminum metallic foam for use with an Intel core i7 processor. The metal foams used have a porosity of 0.91 and different permeabilities ranging from 10 pores per inch (PPI) to 40 PPI. The flow rate at the entrance of the porous cavity varied from 0.22 USGPM to 0.1 USGPM. The fluid consists of water with aluminum nanoparticles having a concentration from 0.1% to 0.5%. The heat fluxes applied at the bottom of the porous test cell vary from 13.25 W/cm2 to 8.34 W/cm2. It has been observed that nanofluid and forced convection improves heat extraction. These observations lead to the conclusion that heat enhancement is possible with nanofluid and it is enhanced further in the presence of a high flow rate. However, it was detected experimentally, verified numerically, and agreed upon by different researchers that higher heat extraction is found for a nanofluid concentration of 0.2%. This observation is independent of the porous permeability or applied heat flux. It has also been shown that heat enhancement in the presence of nanofluid is evident, when experimental results were compared to water.

References

1.
Darcy
,
M. H.
, and
Bazin
,
M. H.
,
1865
,
Recherches Hydrauliques
,
L'Institute Imperial De France
,
Paris, France
.
2.
Simmons
,
C. T.
,
2008
, “
Henry Darcy (1803–1858): Immortalised by His Scientific Legacy
,”
Hydrogeol. J.
,
16
(
6
), pp.
1023
1038
. 10.1007/s10040-008-0304-3
3.
Calmidi
,
V. V.
, and
Mahajan
,
R. L.
,
1999
, “
The Effective Thermal Conductivity of High Porosity Fibrous Metal Foams
,”
ASME J. Heat Transfer
,
121
(
2
), pp.
466
471
. 10.1115/1.2826001
4.
Boomsma
,
K.
, and
Poulikakos
,
D.
,
2011
, “
Erratum: On the Effective Thermal Conductivity of a Three-Dimensionally Structured Fluid-Saturated Metal Foam (International Journal of Heat and Mass Transfer (2001) 44 (827–836))
,”
Int. J. Heat Mass Transfer
,
54
(
1–3
), pp.
746
748
. 10.1016/j.ijheatmasstransfer.2010.08.023
5.
Boomsma
,
K.
, and
Poulikakos
,
D.
,
2001
, “
On the Effective Thermal Conductivity of a Three-Dimensionally Structured Fluid-Saturated Metal Foam
,”
Int. J. Heat Mass Transfer
,
44
(
4
), pp.
827
836
. 10.1016/S0017-9310(00)00123-X
6.
Bhattacharya
,
A.
, and
Mahajan
,
R. L.
,
2002
, “
Finned Metal Foam Heat Sinks for Electronics Cooling in Forced Convection
,”
ASME J. Electron. Packag.
,
124
(
3
), p.
155
. 10.1115/1.1464877
7.
Boomsma
,
K.
,
Poulikakos
,
D.
, and
Zwick
,
F.
,
2003
, “
Metal Foams as Compact High Performance Heat Exchangers
,”
Mech. Mater.
,
35
(
12
), pp.
1161
1176
. 10.1016/j.mechmat.2003.02.001
8.
Dai
,
Z.
,
Nawaz
,
K.
,
Park
,
Y. G.
,
Bock
,
J.
, and
Jacobi
,
A. M.
,
2010
, “
Correcting and Extending the Boomsma-Poulikakos Effective Thermal Conductivity Model for Three-Dimensional, Fluid-Saturated Metal Foams
,”
Int. Commun. Heat Mass Transfer
,
37
(
6
), pp.
575
580
. 10.1016/j.icheatmasstransfer.2010.01.015
9.
Elayiaraja
,
P.
,
Harish
,
S.
,
Wilson
,
L.
,
Bensely
,
A.
, and
Lal
,
D. M.
,
2010
, “
Experimental Investigation on Pressure Drop and Heat Transfer Characteristics of Copper Metal Foam Heat Sink
,”
Exp. Heat Transfer
,
23
(
3
), pp.
185
195
. 10.1080/08916150903399722
10.
Mancin
,
S.
,
Zilio
,
C.
,
Diani
,
A.
, and
Rossetto
,
L.
,
2013
, “
Air Forced Convection Through Metal Foams: Experimental Results and Modeling
,”
Int. J. Heat Mass Transfer
,
62
(
1
), pp.
112
123
. 10.1016/j.ijheatmasstransfer.2013.02.050
11.
Shirazy
,
M. R. S.
, and
Fréchette
,
L. G.
,
2014
, “
Effect of Meniscus Recession on the Effective Pore Radius and Capillary Pumping of Copper Metal Foams
,”
ASME J. Electron. Packag.
,
136
(
4
), p.
041003
. 10.1115/1.4026353
12.
Dukhan
,
N.
,
Bağci
,
Ö.
, and
Özdemir
,
M.
,
2015
, “
Thermal Development in Open-Cell Metal Foam: An Experiment With Constant Wall Heat Flux
,”
Int. J. Heat Mass Transfer
,
85
, pp.
852
859
. 10.1016/j.ijheatmasstransfer.2015.02.047
13.
Yao
,
Y.
,
Wu
,
H.
, and
Liu
,
Z.
,
2015
, “
A New Prediction Model for the Effective Thermal Conductivity of High Porosity Open-Cell Metal Foams
,”
Int. J. Therm. Sci.
,
97
, pp.
56
67
. 10.1016/j.ijthermalsci.2015.06.008
14.
Nguyen
,
C. T.
,
Desgranges
,
F.
,
Galanis
,
N.
,
Roy
,
G.
,
Mare
,
T.
,
Boucher
,
S.
, and
Angue Mintsa
,
H.
,
2008
, “
Viscosity Data for Al2O3-Water Nanofluid-Hysteresis: Is Heat Transfer Enhancement Using Nanofluid Reliable?
,”
Int. J. Therm. Sci.
,
47
(
2
), pp.
103
111
. 10.1016/j.ijthermalsci.2007.01.033
15.
Townsend
,
J.
, and
Christianson
,
R. J.
,
2009
, “
Nanofluid Properties and Their Effects on Convective Heat Transfer in an Electronics Cooling Application
,”
ASME J. Therm. Sci. Eng. Appl.
,
1
(
3
), p.
031006
. 10.1115/1.4001123
16.
Putra
,
N.
,
Septiadi
,
W. N.
,
Rahman
,
H.
, and
Irwansyah
,
R.
,
2013
, “
Thermal Performance of Screen Mesh Wick Heat Pipes With Nanofluid
,”
Appl. Therm. Eng.
,
50
(
1
), pp.
763
770
. 10.1016/j.applthermaleng.2012.06.049
17.
Bourantas
,
G. C.
,
Skouras
,
E. D.
,
Loukopoulos
,
V. C.
, and
Burganos
,
V. N.
,
2014
, “
Heat Transfer and Natural Convection of Nanofluid in Porous Media
,”
Eur. J. Mech. B
,
43
, pp.
45
56
. 10.1016/j.euromechflu.2013.06.013
18.
Ghanbarpour
,
M.
,
Nikkam
,
N.
,
Khodabandeh
,
R.
,
Toprak
,
M. S.
, and
Muhammed
,
M.
,
2015
, “
Thermal Performance of Screen Mesh Heat Pipe With Al2O3 Nanofluid
,”
Exp. Therm. Fluid Sci.
66
, pp.
213
220
. 10.1016/j.expthermflusci.2015.03.024
19.
Sarafraz
,
M. M.
,
Hormozi
,
F.
, and
Peyghambarzadeh
,
S. M.
,
2015
, “
Role of Nanofluid Fouling on Thermal Performance of a Thermosyphon: Are Nanofluid Reliable Working Fluid?
,”
Appl. Therm. Eng.
,
82
, pp.
212
224
. 10.1016/j.applthermaleng.2015.02.070
20.
Sheremet
,
M. A.
,
Ghalambaz
,
M.
, and
Pop
,
I.
,
2015
, “
Free Convection in a Parallelogramic Cavity Filled With a Porous Medium Saturated by Nanofluid Using Tiwari and Das' Nanofluid Model
,”
Transp. Porous Media
,
106
(
3
), pp.
595
610
. 10.1007/s11242-014-0415-3
21.
Ghalambaz
,
M.
,
Behseresht
,
A.
,
Behseresht
,
J.
, and
Chamkha
,
A.
,
2015
, “
Effects of Nanoparticles Diameter and Concentration on Natural Convection of the Al2O3-Water Nanofluid Considering Variable Thermal Conductivity Around a Vertical Cone in Porous Media
,”
Adv. Powder Technol.
,
26
(
1
), pp.
224
235
. 10.1016/j.apt.2014.10.001
22.
Kasaeian
,
A.
,
Daneshazarian
,
R.
,
Mahian
,
O.
,
Kolsi
,
L.
,
Chamkha
,
A. J.
,
Wongwises
,
S.
, and
Pop
,
I.
,
2017
, “
Nanofluid Flow and Heat Transfer in Porous Media: A Review of the Latest Developments
,”
Int. J. Heat Mass Transf.
,
107
, pp.
778
791
., 10.1016/j.ijheatmasstransfer.2016.11.074
23.
Mehryan
,
S. A. M.
,
Kashkooli
,
F. M.
,
Ghalambaz
,
M.
, and
Chamkha
,
A. J.
,
2017
, “
Free Convection of Hybrid Al2O3-Cu Water Nanofluid in a Differentially Heated Porous Cavity
,”
Adv. Powder Technol.
,
28
(
9
), pp.
2295
2305
. 10.1016/j.apt.2017.06.011
24.
Toosi
,
M. H.
, and
Siavashi
,
M.
,
2017
, “
Two-Phase Mixture Numerical Simulation of Natural Convection of Nanofluid Flow in a Cavity Partially Filled With Porous Media to Enhance Heat Transfer
,”
J. Mol. Liq.
,
238
, pp.
553
569
. 10.1016/j.molliq.2017.05.015
25.
Bayomy
,
A. M.
, and
Saghir
,
M. Z.
,
2017
, “
Experimental Study of Using γ-Al2O3–Water Nanofluid Flow Through Aluminum Foam Heat Sink: Comparison With Numerical Approach
,”
Int. J. Heat Mass Transfer
,
107
, pp.
181
203
. 10.1016/j.ijheatmasstransfer.2016.11.037
26.
Saghir
,
M. Z.
,
Ahadi
,
A.
,
Mohamad
,
A.
, and
Srinivasan
,
S.
,
2016
, “
Water Aluminum Oxide Nanofluid Benchmark Model
,”
Int. J. Therm. Sci.
,
109
, pp.
148
158
. 10.1016/j.ijthermalsci.2016.06.002
27.
Saghir
,
M. Z.
, and
Bayomy
,
A. M.
,
2018
, “
Heat Enhancement and Heat Storage for a Ternary Mixture in a Circular Pipe
,”
Therm. Sci. Eng. Prog.
,
5
, pp.
32
43
. 10.1016/j.tsep.2017.10.020
28.
Saghir
,
M. Z.
, and
Mohamad
,
A. M.
,
2018
, “
Effectiveness in Incorporating Brownian and Thermophoresis Effects in Modelling Convective Flow of Water-Al2O3 Nanoparticles
,”
Int. J. Numer. Methods Heat Fluid Flow
,
28
(
1
), pp.
47
63
. 10.1108/HFF-10-2016-0398
29.
Welsford
,
C.
,
Bayomy
,
A. M.
, and
Saghir
,
M. Z.
,
2018
, “
Role of Metallic Foam in Heat Storage in the Presence of Nanofluid and Microencapsulated Phase Change Material
,”
Therm. Sci. Eng. Prog.
,
7
, pp.
61
69
. 10.1016/j.tsep.2018.05.003
30.
Bayomy
,
A.
, and
Saghir
,
M. Z.
,
2017
, “
Heat Development and Comparison Between the Steady and Pulsating Flows Through Aluminum Foam Heat Sink
,”
ASME J. Therm. Sci. Appl.
,
9
(
3
), p.
031006
. 10.1115/1.4035937
31.
Ho
,
C. J.
,
Liu
,
W. K.
,
Chang
,
Y. S.
, and
Lin
,
C. C.
,
2010
, “
Natural Convection Heat Transfer of Alumina-Water Nanofluid in Vertical Square Enclosures: An Experimental Study
,”
Int. J. Therm. Sci.
,
49
, pp.
1345
1353
. 10.1016/j.ijthermalsci.2010.02.013
32.
COMSOL Multiphysics Modeling Software
,
2018
, “
Comsol User Manual, Version 5.3
,”
COMSOL
,
Boston, MA
.
33.
Bayomy
,
A. M.
,
2017
, “
Electronic Cooling Using ERG Aluminum Foam Subjected to Steady/Pulsating Water and γ-Al2O3–Water Nanofluid Flows: Experimental and Numerical Approach
,” ,
Ryerson University
,
Toronto, Canada
.
You do not currently have access to this content.