Abstract

To meet the worldwide requirements of carbon emission reduction, the European Council has set the UK a 15% energy target to come from renewable energy by 2020. The biggest renewable energy sources in the UK are bioenergy, wind, solar, and hydro. The UK is located in prime geography, considered to be the best in Europe, for harvesting, and over the last three decades, the number of wind farms has increased greatly. However, the interaction of wind speed and structural strength has limited the height of platform-based wind turbines to a maximum height of around 100 m. Airborne wind energy (AWE) systems enable the extraction of more energy from the wind at elevated altitudes beyond 150 m using a device termed a kite. A method is required to determine suitable locations for AWE system implementation. In this work, a regional feasibility study has been conducted to establish an ideal suitable location to implement AWE systems. Extensive research has been carried out to assess the electricity costs, energy savings, area availability, as well as regional airborne wind energy power densities at different regions within the UK. A standardized method has been developed to assess the viability of AWE in various geographical locations. It was found that Scotland was the most suitable location for the implementation of AWE systems due to the high wind power density in this region and existing high costs of electricity, thus greater potentials for energy cost savings.

References

1.
UK Energy in Brief
,
2017
, “
Department for Business, Energy & Industrial Strategy
.”
2.
NREL
,
2012
,
Wind Energy Update: Wind Powering America
,
National Renewable Energy Laboratory
,
Golden, CO
.
3.
IRENA
,
2012
,
Renewable Energy Technologies: Cost Analysis Series, Wind Power (Volume 1: Power Sector, Issue 5/5 ed.)
,
International Renewable Energy Agency
,
Abu Dhabi
.
4.
Manwell
,
J. F.
,
McGowan
,
J. G.
, and
Rogers
,
A. L.
,
2009
,
Wind Energy Explained: Theory, Design and Application
, 2nd ed.,
John Wiley & Sons Ltd.
,
New York
.
5.
Husain
,
Z.
,
2010
,
Air Breathing Engines
,
I. K. International Pvt Ltd.
,
New Delhi, India
.
6.
Burton
,
T.
,
Sharpe
,
D.
,
Jenkins
,
N.
, and
Bossanyi
,
E.
,
2001
,
Wind Energy Handbook
,
John Wiley & Sons Ltd.
,
New York
.
7.
Hennessey
,
J. P.
,
1977
, “
Some Aspects of Wind Power Statistics
,”
J. Appl. Meteorol.
,
16
(
2
), pp.
119
128
. 10.1175/1520-0450(1977)016<0119:SAOWPS>2.0.CO;2
8.
Sigl
,
A. B.
,
Corotis
,
R. B.
, and
Klein
,
J.
,
1978
, “
Probability Models of Wind Velocity Magnitude and Persistence
,”
Solar Energy
,
20
(
6
), pp.
483
493
. 10.1016/0038-092X(78)90065-8
9.
Schlichting
,
H.
,
1979
,
Boundary Layer Theory
, 7th ed.,
McGraw-Hill
,
London
.
10.
Justus
,
C. G.
,
1978
,
Winds and Wind System Performance
,
Franklin Institute Press
,
Philadelphia, PA
.
11.
Gasch
,
R.
, and
Twele
,
J.
,
2011
,
Wind Power Plants: Fundamentals, Design, Construction and Operation
, 2nd ed.,
Springer Science & Business Media
,
London
.
12.
Garratt
,
J. R.
,
1994
,
The Atmospheric Boundary Layer
,
Cambridge University Press
,
Cambridge, UK
.
13.
Hassan
,
G.
,
2015
, “
Best Practice for Accurate Wind Speed Measurements
, http://www.wind-energy-the-facts.org/best-practice-for-accurate-wind-speed-measurements.html
14.
Canale
,
M.
,
Fagiano
,
L.
, and
Milanese
,
M.
,
2007
,
Power Kites for Wind Energy Generation: Fast Predictive Control of Tethered Airfoils
,
IEEE Control Systems Magazine
,
Piscataway, NJ
.
15.
Archer
,
C.
, and
Caldeira
,
K.
,
2009
, “
Global Assessment of High-Altitude Wind Power
,”
Energies
,
2
(
2
), pp.
307
319
. 10.3390/en20200307
16.
Shrestha
,
S.
,
Babel
,
M. S.
, and
Pandey
,
V. P.
,
2014
,
Climate Change and Water Resources
,
CRC Press
,
Boca Raton, FL
.
17.
Roberts
,
B. W.
,
2007
, “
Harnessing High-Altitude Wind Power
,”
IEEE Trans. Energy Convers.
,
20
(
1
), pp.
136
144
. 10.1109/TEC.2006.889603
18.
Caldeira
,
K.
,
1998
, “
Energy Implications of Future Stabilization of Atmospheric CO2 Content
,”
Nature
,
395
(
6705
), pp.
881
884
. 10.1038/27638
19.
Peixoto
,
J. P.
, and
Oort
,
A.
,
1992
,
Physics of Climate
,
American Institute of Physics
,
College Park, MD
.
20.
Betz
,
A.
,
1926
,
Wind-Energie und ihre ausnutzung durch Windmühlen [Wind Energy & It’s Extraction Through Windmills]
,
Vandenhoeck
,
Göttingen, Germany
.
21.
Brankera
,
K.
,
Pathaka
,
M.
, and
Pearcea
,
J.
,
2011
, “
A Review of Solar Photovoltaic Levelized Cost of Electricity
,”
Renew. Sustain. Energy Rev.
,
11
(
9
), pp.
4470
4482
. 10.1016/j.rser.2011.07.104
22.
Jaber
,
S.
,
2013
, “
Environmental Impacts of Wind Energy
,”
J. Clean Energy Technol.
,
1
(
3
), pp.
251
225
10.7763/JOCET.2013.V1.57.
23.
Fagiano
,
L.
,
Milanese
,
M.
, and
Piga
,
D.
,
2010
, “
High-Altitude Wind Power Generation
,”
Control Syst. Technol.: IEEE Trans. Energy Convers.
,
18
(
2
), pp.
168
180
. 10.1109/TEC.2009.2032582
24.
Grothaus
,
J. H.
,
2009
,
ACRP: Guidebook for Managing Small Airports
,
Transportation Research Board of the National Academies
,
Washington, DC
.
25.
Rule
,
T. A.
,
2014
,
Solar, Wind and Land: Conflicts in Renewable Energy Development
,
Routledge
,
Abingdon-on-Thames
.
26.
American Meteorological Society
,
2009
, “
Tapping Wind Power at High Altitudes
,”
Bull. Am. Meteorol. Soc.
,
90
(
9
), pp.
1259
1261
. 10.1175/1520-0477-90.9.1259
27.
EMPA
,
2009
, “
Center for Synergetic Structures: Kite Power
,” http://www.empa.ch/plugin/template/empa/1042/*/---/l=2
28.
Ahrens
,
U.
,
Diehl
,
M.
, and
Schmehl
,
R.
,
2013
,
Airborne Wind Energy
,
Springer
,
Berlin, Germany
.
29.
Risø National Laboratory
,
2012
, “
Wind Energy the Facts: Wind Atlases
,” http://www.wind-energy-the-facts.org/wind-atlases.html
31.
DECC
,
2016
,
Sub-National Electricity and Gas Consumption Statistics
,
The Department of Energy and Climate Change
,
London
.
32.
Office for National Statistics
,
2011
, “
2011 Census—UK Population Density
,” https://www.ons.gov.uk/peoplepopulationandcommunity/populationandmigration
You do not currently have access to this content.