Abstract

Non-premixed combustion was implemented in a micro-lobed combustion system, and its influence on combustion was studied using both experiments and simulations. The results show that a micro-lobed burner produces streamwise vortices with intensities that increase with the equivalence ratio of methane to oxygen (Φ). Due to the streamwise vortices and the increment of the contact area between methane and oxygen, the gasses mix well in the micro-lobed burner, giving it a larger OH mass fraction and higher temperatures than the micro-splitter burner. Moreover, the equivalence ratio greatly influences the combustion enhancement from the micro-lobed burner, especially near the burner exit. The maximum temperature difference between the two micro-burners at the Z/D = 0.01 cross section is 171 K, when Φ is 0.6. However, when the mixing enhancement caused by the streamwise vortices disappears, Φ has little influence on the combustion temperature of the micro-lobed burner, especially when Φ ≥ 1. In this case, the maximum temperature variation between the micro-lobed burner and micro-splitter burner remains nearly constant.

References

1.
Epstein
,
A. H.
,
Senturia
,
S. D.
,
Al-Midani
,
O.
,
Anathasuresh
,
G.
,
Ayon
,
A.
,
Breuer
,
K.
,
Chen
,
K. S.
,
Ehrich
,
F. F.
,
Esteve
,
E.
,
Frechette
,
L.
,
Gauba
,
G.
,
Ghodssi
,
R.
,
Groshenry
,
C.
,
Jacobson
,
S. A.
,
Kerrebrock
,
J. L.
,
Lang
,
J. H.
,
Lin
,
C. C.
,
London
,
A.
,
Lopata
,
J.
,
Mehra
,
A.
,
Mur Miranda
,
J. O.
,
Nagle
,
S.
,
Orr
,
D. J.
,
Piekos
,
E.
,
Schmidt
,
M. A.
,
Shirley
,
G.
,
Spearing
,
S. M.
,
Tan
,
C. S.
,
Tzeng
,
Y. S.
, and
Waitz
,
I. A.
,
1997
, “
Micro-Heat Engines, Gas Turbines, and Rocket Engines-The MIT Microengine Project
,” AIAA Paper No. AIAA-1997-1773.
2.
Isomura
,
K.
,
Tanaka
,
S.
,
Togo
,
S. I.
, and
Esashi
,
M.
,
2005
, “
Development of High-Speed Micro-Gas Bearings for Three-Dimensional Micro-Turbo Machines
,”
J. Micromech. Microeng.
,
15
(
9
), pp.
S222
S227
. 10.1088/0960-1317/15/9/S08
3.
Tanaka
,
S.
,
Hikichi
,
K.
,
Togo
,
S.
,
Murayama
,
M.
,
Hirose
,
Y.
,
Sakurai
,
T.
,
Yuasa
,
S.
,
Teramoto
,
S.
,
Niino
,
T.
,
Mori
,
T.
,
Esashi
,
M.
, and
Isomura
,
K.
,
2007
, “
World’s Smallest Gas Turbine Establishing Brayton Cycle
,”
The 7th International Workshop on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (Power MEMS 2007)
,
Freiburg, Germany
,
Nov. 28–29
, pp.
359
362
.
4.
Maruta
,
K.
,
Takeda
,
K.
,
Sitzki
,
L.
,
Borer
,
K.
,
Ronney
,
P. D.
,
Wussow
,
S.
, and
Deutschmann
,
O.
,
2001
, “
Catalytic Combustion in Microchannel for MEMS Power Generation
,”
Third Asia-Pacific Conference on Combustion
,
Seoul, Korea
,
June 24–27
, pp.
219
222
.
5.
Sitzki
,
L.
,
Borer
,
K.
,
Schuster
,
E.
,
Ronney
,
P. D.
, and
Wussow
,
S.
,
2001
, “
Combustion in Microscale Heat-Recirculating Burners
,”
38th AIAA Space Sciences and Exhibit
, AIAA Paper No. AIAA-2001-1087.
6.
Sitzki
,
L.
,
Borer
,
K.
,
Schuster
,
E.
, and
Ronney
,
P. D.
,
2001
, “
Combustion in Microscale Heat-Recirculating Burners
,”
Third Asia-Pacific Conference on Combustion.
,
Seoul, Korea
,
June 24–27
, pp.
1
4
.
7.
Yetter
,
R. A.
,
Yang
,
V.
,
Milius
,
D. L.
,
Aksay
,
I. A.
, and
Dryer
,
F. L.
,
2001
, “
Development of a Liquid Propellant Micro-Thruster for Small Spacecraft
,”
Eastern States Section Meeting of the Combustion Institute
,
Hilton Head, SC
,
Dec. 3–5
, pp.
1
5
.
8.
Waitz
,
I. A.
,
Gauba
,
G.
, and
Tzeng
,
Y. S.
,
1998
, “
Combustors for Micro Gas Turbine Engines
,”
ASME J. Fluid. Eng.
,
120
(
1
), pp.
109
117
. 10.1115/1.2819633
9.
Spadaccini
,
C. M.
,
Peck
,
J.
, and
Waitz
,
I. A.
,
2007
, “
Catalytic Combustion Systems for Microscale Gas Turbine Engines
,”
ASME J. Eng. Gas Turbines Power
,
129
(
1
), pp.
49
60
. 10.1115/1.2204980
10.
Maruta
,
K.
,
2010
, “
Micro and Mesoscale Combustion
,”
Proc. Combus. Inst.
,
33
(
1
), pp.
125
150
. 10.1016/j.proci.2010.09.005
11.
Baigmohammadi
,
M.
,
Sadeghi
,
S. S.
,
Tabejamaat
,
J.
, and
Zarvandi
,
J.
,
2013
, “
Numerical Study of the Effects of Wire Insertion on CH4 (Methane)/Air Pre-Mixed Flame in a Micro Combustor
,”
Energy
,
54
(
6
), pp.
271
284
. 10.1016/j.energy.2013.01.047
12.
E
,
J. Q.
,
Peng
,
Q. G.
,
Zhao
,
X. H.
,
Zuo
,
W.
,
Zhang
,
Z. Q.
, and
Pham
,
M.
,
2017
, “
Numerical Investigation on the Combustion Characteristics of Non-Premixed Hydrogen-Air in a Novel Micro-Combustor
,”
Appl. Therm. Eng.
,
110
(
1
), pp.
665
677
. 10.1016/j.applthermaleng.2016.08.210
13.
Niu
,
J. T.
,
Ran
,
J. Y.
,
Li
,
L. Y.
,
Du
,
X. S.
,
Wang
,
R. R.
, and
Ran
,
M. C.
,
2016
, “
Effects of Trapezoidal Bluff Bodies on Blow Out Limit of Methane/air Combustion in a Micro-Channel
,”
Appl. Therm. Eng.
,
95
(
2
), pp.
454
461
. 10.1016/j.applthermaleng.2015.11.061
14.
Fan
,
A. W.
,
Zhang
,
R. J.
, and
Liu
,
W.
,
2011
, “
Study on Flame Stabilization in a Planar Micro Combustor With a Bluff Body
,”
The China National Symposium on Combustion.
,
Wuhan, China
,
Apr. 15–17
, pp.
1
4
.
15.
Miesse
,
C. M.
,
Masel
,
R. I.
,
Short
,
M.
, and
Shannon
,
M. A.
,
2005
, “
Diffusion Flame Instabilities in a 0.75 mm Non-Premixed Micro Burner
,”
Proc. Combus. Inst.
,
30
(2), pp.
2499
2507
. 10.1016/j.proci.2004.08.140
16.
Pan
,
J. F.
,
Wu
,
D.
,
Liu
,
Y. X.
,
Zhang
,
H. F.
,
Tang
,
A. K.
, and
Xue
,
H.
,
2015
, “
Hydrogen/Oxygen Premixed Combustion Characteristics in Micro Porous Media Combustor
,”
Appl. Energy
,
160
(
12
), pp.
802
807
. 10.1016/j.apenergy.2014.12.049
17.
Li
,
J.
,
Wang
,
Y. T.
,
Shi
,
J. R.
, and
Liu
,
X. L.
,
2015
, “
Dynamic Behaviors of Premixed Hydrogen-Air Flames in a Planar Micro-Combustor Filled With Porous Medium
,”
Fuel
,
145
(
4
), pp.
70
78
. 10.1016/j.fuel.2014.12.070
18.
Mardani
,
A.
,
Koochaksarai
,
M. Y.
, and
Javadi
,
K.
,
2016
, “
Numerical Study on Boundary Layer Control Using CH4-H2-Air Micro-Reacting Jet
,”
Int. J. Hydrogen Energy
,
4147
, pp.
22433
22452
. 10.1016/j.ijhydene.2016.10.027
19.
Pan
,
J. F.
,
Yang
,
W. M.
,
Tang
,
A. K.
,
Chou
,
S. K.
,
Duan
,
L.
,
Li
,
X. C.
, and
Xue
,
H.
,
2010
, “
Micro Combustion in Sub-Millimeter Channels for Novel Modular Thermophotovoltaic Power Generators
,”
J. Miromech. Microeng.
,
20
(
12
), pp.
125021
. 10.1088/0960-1317/20/12/125021
20.
Fan
,
A. W.
,
Yao
,
H.
, and
Liu
,
W.
,
2012
,
Micro-Combustion
,
Science Press
,
Beijing, China
.
21.
Skebe
,
S. A.
,
Paterson
,
R. W.
, and
Baber
,
T. J.
,
1988
, “
Experimental Investigation of Three Dimensional Forced Mixer Lobe Flow Field
,”
1st AIAA/ASME/ASCE/SIAM/APS National Fluid Dynamics Congress
, AIAA paper No. AIAA-1988-3785.
22.
Elliott
,
J. K.
,
Manning
,
Y. J.
,
Qiu
,
Y. J.
,
Greitzer
,
E. M.
,
Tan
,
C. S.
, and
Tillman
,
T. G.
,
1992
, “
Computational and Experimental Studies of Flow in Multi-Lobed Forced Mixers
,”
28th AIAA/SAE/ASME Joint Propulsion Conference
, AIAA paper No. AIAA-1992-3568.
23.
Cooper
,
N. J.
,
Merati
,
P.
, and
Hu
,
H.
,
2005
, “
Numerical Simulation of the Vortical Structures in a Lobed jet Mixing Flow
,”
43rd AIAA Aerospace Sciences Meeting and Exhibit
, AIAA paper No. AIAA-2005-635.
24.
Smith
,
G. P.
,
Golden
,
D. M.
,
Frenklach
,
M.
,
Moriarty
,
N. W.
,
Eiteneer
,
B.
,
Goldenberg
,
M.
,
Bowman
,
T. C.
,
Hanson
,
R. K.
,
Song
,
S.
, and
Gardiner
,
W. C.
,
1999
, “
GRI-Mech 3.0
,” http://combustion.berkeley.edu/gri-mech/version30/text30.html.
25.
Xie
,
Y.
, and
Liu
,
Y. H.
,
2011
, “
A Modified Thermal Mixing Efficiency and Its Application to Lobed Mixer Nozzle for Aero-Engines
,”
Heat Transf. Res.
,
42
(
4
), pp.
317
335
. 10.1615/HeatTransRes.2011003398
26.
Xie
,
Y.
,
Zhong
,
C.
,
Ruan
,
D. F.
,
Liu
,
K.
, and
Zheng
,
B.
,
2016
, “
Effect of Core Flow Inlet Swirl Angle on Performance of Lobed Forced Mixing Exhaust System
,”
J. Mech.
,
32
(3), pp.
1
13
. 10.1017/jmech.2016.1
27.
Peters
,
N.
, and
Kee
,
R. J.
,
1987
, “
Computation of Stretched Laminar Methane-Air Diffusion Flames Using a Reduced-Four Step Mechanism
,”
Combust. Flame
,
68
(
1
), pp.
17
29
. 10.1016/0010-2180(87)90062-9
You do not currently have access to this content.