Abstract

This review focuses on progress and emerging challenges in experimentally validated modeling of microscale urban thermal environments over the last two decades. In the last few decades, there has been a surge in urban energy contribution resulting in elevated urban day-/night-time air temperatures. While there is no single solution to urban heat, mitigation strategies can be implemented to minimize the harmful effects of urban heat both on humans and the environment. To study the effects of urban heat, numerical modeling of urban thermal environments has seen a rise in usage of several application specific atmospheric modeling software packages, and multiple studies and reviews have already covered the prolific engineering use cases. However, there are inherent and unintentional biases introduced by each modeling software package, that inhibit validity and accuracy for general engineering use. This review critically analyzes the limitations of current state-of-the-art (SOA) microscale atmospheric modeling approaches and identify necessary areas for improvement. Urban thermal environment models must be validated with measurements to gain confidence in the predictive capabilities. This review will additionally examine the next generation of measurement techniques that leverage advances in computing and communications to create distributed meteorological sensor networks for improved spatial and temporal resolutions, that can provide a rich platform for model validation. High fidelity and accurate simulations of urban thermal environments improve confidence in the study of urban heat, its mitigation, and its impact on urban engineering applications in building energy usage and sustainability.

References

1.
UNDESA
,
2018
, 68% of the World Population Projected to Live in Urban Areas by 2050, says UN, https: //www.un.org/development/desa/en/news/population/2018-revision-of-world-urbanization-prospects.html
2.
Oke
,
T. R.
,
1982
, “
The Energetic Basis of the Urban Heat Island
,”
Q. J. R. Metereol. Soc.
,
108
(
455
), pp.
1
24
.
3.
US EPA
,
2008
, Reducing Urban Heat Islands: Compendium of strategies. U.S. Environmental Protection Agency.
4.
Julius
,
S.
,
Maxwell
,
K.
,
Grambsch
,
A.
,
Kosmal
,
A.
,
Larson
,
L.
, and
Sonti
,
N.
,
2018
,
Built Environment, Urban Systems, and Cities
, Vol.
2
. Book
Sec. 11, U.S. Global Change Research Program
,
Washington, D.C.
, pp.
438
478
.
5.
Coles
,
J. F.
,
McMahon
,
G.
,
Bell
,
A. H.
,
Brown
,
L. R.
,
Fitzpatrick
,
F. A.
,
Scudder Eikenberry
,
B. C.
,
Woodside
,
M. D.
, et al.,
2012
, Effects of Urban Development on Stream Ecosystems in Nine Metropolitan Study Areas Across the United States. Report, U. S. Geological Survey (USGS).
6.
Anderson
,
G. B.
, and
Bell
,
M. L.
,
2011
, “
Heat Waves in the United States: Mortality Risk During Heat Waves and Effect Modification by Heat Wave Characteristics in 43 U.S. Communities
,”
Environ. Health. Perspect.
,
119
(
2
), pp.
210
218
.
7.
Luber
,
G.
,
Knowlton
,
K.
,
Balbus
,
J.
,
Hayden
,
M.
,
Hess
,
J.
,
McGeehin
,
M.
,
Sheats
,
N.
, et al
,
2014
,
Ch.9: Human Health
.
U.S. Global Change Research Program
,
Washington, D.C.
, Book Sec. 9, pp.
220
256
.
8.
Petitti
,
D. B.
,
Hondula
,
D. M.
,
Yang
,
S.
,
Harlan
,
S. L.
, and
Chowell
,
G.
,
2016
, “
Multiple Trigger Points for Quantifying Heat-Health Impacts: New Evidence From a Hot Climate
,”
Environ. Health. Perspect.
,
124
(
2
), pp.
176
183
.
9.
Battisti
,
D. S.
, and
Naylor
,
R. L.
,
2009
, “
Historical Warnings of Future Food Insecurity With Unprecedented Seasonal Heat, Science
,”
J. Sci.
,
323
(
5911
), pp.
240
244
.
10.
Anderson
,
M.
,
McMinn
,
S.
,
Eckert
,
N.
,
Underwood
,
N.
,
Mussenden
,
S.
,
Ready
,
R.
, and
Diffendal
,
T.
,
2019
, As Rising Heat Bakes U.S. Cities, the Poor Often Feel It Most.
11.
Levine
,
J. A.
,
2011
, “
Poverty and Obesity in the U.S
,”
Diabetes
,
60
(
11
), pp.
2667
2668
.
12.
Diffenbaugh
,
N. S.
, and
Scherer
,
M.
,
2011
, “
Observational and Model Evidence of Global Emergence of Permanent, Unprecedented Heat in the 20th and 21st Centuries
,”
Clim. Change
,
107
(
3–4
), pp.
615
624
.
13.
Orlanski
,
I.
,
1975
, “
A Rational Subdivision of Scales for Atmospheric Processes
,”
Bull. Am. Meteorol. Soc.
,
56
, pp.
527
530
.
14.
Oke
,
T.
,
1997
,
Urban Environments
,
McGill-Queen’s University Press
,
Montréal
, Book Sec. 13, pp.
303
327
.
15.
Santamouris
,
M.
,
2013
, “
Using Cool Pavements as a Mitigation Strategy to Fight Urban Heat Island-A Review of the Actual Developments
,”
Renew. Sustain. Energy. Rev.
,
26
, pp.
224
240
.
16.
Santamouris
,
M.
,
2014
, “
Cooling the Cities – A Review of Reflective and Green Roof Mitigation Technologies to Fight Heat Island and Improve Comfort in Urban Environments
,”
Sol. Energy.
,
103
, pp.
682
703
.
17.
Santamouris
,
M.
,
Cartalis
,
C.
,
Synnefa
,
A.
, and
Kolokotsa
,
D.
,
2015
, “
On the Impact of Urban Heat Island and Global Warming on the Power Demand and Electricity Consumption of Buildings–a Review
,”
Energy Build.
,
98
, pp.
119
124
.
18.
Akbari
,
H.
, and
Kolokotsa
,
D.
,
2016
, “
Three Decades of Urban Heat Islands and Mitigation Technologies Research
,”
Energy Build.
,
133
, pp.
834
842
.
19.
Stone
,
B.
,
Vargo
,
J.
,
Liu
,
P.
,
Habeeb
,
D.
,
Delucia
,
A.
,
Trail
,
M.
,
Hu
,
Y.
, and
Russell
,
A.
,
2014
, “
Avoided Heat-Related Mortality Through Climate Adaptation Strategies in Three US Cities
,”
PLoS One
,
9
(
6
), p.
e100852
.
20.
Vallis
,
G. K.
,
2016
, “
Geophysical Fluid Dynamics: Whence, Whither and Why?
,”
Proc. R. Soc. A: Math., Phys. Eng. Sci.
,
472
(
2192
), p.
20160140
.
21.
NCAR, and UCAR
,
2020
, Weather Research and Forecasting Model. https://www.mmm.ucar.edu/weather-research-and-forecasting-model.
22.
Benjamin
,
S. G.
,
Weygandt
,
S. S.
,
Brown
,
J. M.
,
Hu
,
M.
,
Alexander
,
C. R.
,
Smirnova
,
T. G.
,
Olson
,
J. B.
, et al.,
2016
, “
A North American Hourly Assimilation and Model Forecast Cycle: The Rapid Refresh
,”
Mon. Weather Rev.
,
144
(
4
), pp.
1669
1694
.
23.
Tallapragada
,
V.
,
2016
,
Overview of the NOAA/NCEP Operational Hurricane Weather Research and Forecast (HWRF) Modelling System
,
Springer Netherlands
, Book Sec. 3, pp.
51
106
.
24.
Powers
,
J. G.
,
Klemp
,
J. B.
,
Skamarock
,
W. C.
,
Davis
,
C. A.
,
Dudhia
,
J.
,
Gill
,
D. O.
,
Coen
,
J. L.
, et al.,
2017
, “
The Weather Research and Forecasting Model: Overview, System Efforts, and Future Directions
,”
Bull. Am. Meteorol. Soc.
,
98
(
8
), pp.
1717
1737
.
25.
Barlage
,
M.
,
Miao
,
S.
, and
Chen
,
F.
,
2016
, “
Impact of Physics Parameterizations on High-Resolution Weather Prediction Over Two Chinese Megacities
,”
J. Geophys. Res.: Atmos.
,
121
(
9
), pp.
4487
4498
.
26.
Simon
,
J. S.
,
Zhou
,
B.
,
Mirocha
,
J. D.
, and
Chow
,
F. K.
,
2019
, “
Explicit Filtering and Reconstruction to Reduce Grid Dependence in Convective Boundary Layer Simulations Using WRF-LES
,”
Mon. Weather Rev.
,
147
(
5
), pp.
1805
1821
.
27.
Skamarock
,
W. C.
,
Klemp
,
J. B.
,
Dudhia
,
J.
,
Gill
,
D. O.
,
Liu
,
Z.
,
Berner
,
J.
,
Wang
,
W.
, et al.,
2019
, A Description of the Advanced Research WRF Model Version 4. Report, NCAR Tech.
28.
Sun
,
J. Z.
, and
Wang
,
H. L.
,
2013
, “
WRF-ARW Variational Storm-Scale Data Assimilation: Current Capabilities and Future Developments
,”
Adv. Meteorol.
,
2013
, p.
13
.
29.
Cohen
,
A. E.
,
Cavallo
,
S. M.
,
Coniglio
,
M. C.
, and
Brooks
,
H. E.
,
2015
, “
A Review of Planetary Boundary Layer Parameterization Schemes and Their Sensitivity in Simulating Southeastern U.S. Cold Season Severe Weather Environments
,”
Weather and Forecast.
,
30
(
3
), pp.
591
612
.
30.
Silva Dos Santos
,
A. T.
,
Santos E Silva
,
C. M.
,
Faro Do Amaral Lemos
,
D.
,
De Lima Oliveira
,
L.
, and
André Cruz Bezerra
,
L.
,
2016
, “
Assessment of Wind Resources in Two Parts of Northeast Brazil With the Use of Numerical Models
,”
Meteorol. Appl.
,
23
(
4
), pp.
563
573
.
31.
George
,
W. K.
,
2013
,
Lectures in Turbulence for the 21st Century
,
Imperial College of London
,
London, UK
, pp.
64
68
.
32.
Piomelli
,
U.
, and
Geurts
,
B. J.
,
2011
,
A Physical Length-Scale for LES of Turbulent Flow
,
Springer Netherlands
, pp.
15
20
.
33.
Bakker
,
A.
,
2008
,
Turbulence Models
. Lecture 10, pp.
357
398
. https://www.bakker.org/Lectures-Applied-CFD.pdf.
34.
ANSYS
,
2021
, Ansys CFX User’s Guide. Report, ANSYS, Incorporated, 01.
35.
ANSYS
,
2020
, Ansys Fluent User’s Guide. Report, ANSYS, Incorporated, 01.
36.
OpenCFD Limited
,
2020
, Openfoam: User Guide. Report, OpenCFD Limited, 12.
37.
Siemens
,
A. G.
,
2021
, Siemens Simcenter STAR-CCM+ User’s Guide. Report, Siemens AG., 01.
38.
ENVI-met GmbH
,
2020
, ENVI-Met 4. A Holistic Microclimate Modelling System.
39.
Tsoka
,
S.
,
Tsikaloudaki
,
A.
, and
Theodosiou
,
T.
,
2018
, “
Analyzing the ENVI-Met Microclimate Model’s Performance and Assessing Cool Materials and Urban Vegetation Applications-A Review
,”
Sustain. Cities Soc.
,
43
, pp.
55
76
.
40.
Maronga
,
B.
,
Gryschka
,
M.
,
Heinze
,
R.
,
Hoffmann
,
F.
,
Kanani-Sühring
,
F.
,
Keck
,
M.
,
Ketelsen
,
K.
,
Letzel
,
M. O.
,
Sühring
,
M.
, and
Raasch
,
S.
,
2015
, “
The Parallelized Large-Eddy Simulation Model (PALM) Version 4.0 for Atmospheric and Oceanic Flows: Model Formulation, Recent Developments, and Future Perspectives
,”
Geosci. Model Dev.
,
8
(
8
), pp.
2515
2551
.
41.
Baik
,
J.-J.
,
Park
,
S.-B.
, and
Kim
,
J.-J.
,
2009
, “
Urban Flow and Dispersion Simulation Using a CFD Model Coupled to a Mesoscale Model
,”
J. Appl. Meteorol. Climatol.
,
48
(
8
), pp.
1667
1681
.
42.
Chatzidimitriou
,
A.
, and
Yannas
,
S.
,
2016
, “
Microclimate Design for Open Spaces: Ranking Urban Design Effects on Pedestrian Thermal Comfort in Summer
,”
Sustain. Cities Soc.
,
26
, pp.
27
47
.
43.
Ali
,
S.
, and
Li
,
B. F.
,
2018
, “
Evaluating the Impact of the Morphological Transformation of Urban Sites on the Urban Thermal Microenvironment
,”
Buildings
,
8
(
12
), p.
182
.
44.
Battista
,
G.
,
Evangelisti
,
L.
,
Guattari
,
C.
,
Vollaro
,
E. D.
,
Vollaro
,
R. D.
, and
Asdrubali
,
F.
,
2020
, “
Urban Heat Island Mitigation Strategies: Experimental and Numerical Analysis of a University Campus in Rome (Italy)
,”
Sustainability
,
12
(
19
), p.
7971
.
45.
Balczo
,
M.
,
Gromke
,
C.
, and
Ruck
,
B.
,
2009
, “
Numerical Modeling of Flow and Pollutant Dispersion in Street Canyons With Tree Planting
,”
Meteorologische Zeitschrift
,
18
(
2
), pp.
197
206
.
46.
Gusson
,
C. S.
, and
Duarte
,
D. H. S.
,
2016
, “
Effects of Built Density and Urban Morphology on Urban Microclimate - Calibration of the Model ENVI-met V4 for the Subtropical Sao Paulo, Brazil
,”
Procedia. Eng.
,
169
, pp.
2
10
.
47.
Almeida
,
M. S.
,
Araujo
,
A. D.
, and
Almeida
,
M. P.
,
2018
, “
Tall Building Influence on City Wind Pattern
,”
Int. J. Modern Phys. C
,
29
(
10
), p.
19
.
48.
Buccolieri
,
R.
,
Gatto
,
E.
,
Manisco
,
M.
,
Ippolito
,
F.
,
Santiago
,
J. L.
, and
Gao
,
Z.
,
2020
, “
Characterization of Urban Greening in a District of Lecce (Southern Italy) for the Analysis of CO2 Storage and Air Pollutant Dispersion
,”
Atmosphere
,
11
(
9
), p.
967
.
49.
Memon
,
R. A.
,
Uqaili
,
M. A.
, and
Hashmani
,
A. A.
,
2011
, “
Modeling the Effect of Wider Canyons on Urban Heating
,”
Mehran Univ. Res. J. Eng. Technol.
,
30
(
2
), pp.
255
264
.
50.
Heldens
,
W.
,
Heiden
,
U.
,
Esch
,
T.
,
Mueller
,
A.
, and
Dech
,
S.
,
2016
, “
Suitability of Remote Sensing Based Surface Information for a Three-Dimensional Urban Microclimate Model
,”
IEEE International Geoscience and Remote Sensing Symposium (IGARSS)
,
Beijing, China
,
July 10–15
,
IEEE
, pp.
7322
7325
.
51.
Crank
,
P. J.
,
Sailor
,
D. J.
,
Ban-Weiss
,
G.
, and
Taleghani
,
M.
,
2018
, “
Evaluating the Envi-Met Microscale Model for Suitability in Analysis of Targeted Urban Heat Mitigation Strategies
,”
Urban Clim.
,
26
, pp.
188
197
.
52.
Chen
,
Y. P.
,
Zheng
,
B. H.
, and
Hu
,
Y. Z.
,
2020
, “
Numerical Simulation of Local Climate Zone Cooling Achieved Through Modification of Trees, Albedo and Green Roofs-A Case Study of Changsha, China
,”
Sustainability
,
12
(
7
), p.
2752
.
53.
Égerházi
,
L. A.
,
Kovács
,
A.
, and
Unger
,
J.
,
2013
, “
Application of Microclimate Modelling and Onsite Survey in Planning Practice Related to an Urban Micro-Environment
,”
Adv. Meteorol.
,
2013
, pp.
1
10
.
54.
Mei
,
D.
,
Deng
,
Q. H.
,
Wen
,
M.
, and
Fang
,
Z.
,
2016
, “
Evaluating Dust Particle Transport Performance Within Urban Street Canyons With Different Building Heights
,”
Aerosol Air Qual. Res.
,
16
(
6
), pp.
1483
1496
.
55.
Ebrahimabadi
,
S.
,
Johansson
,
C.
,
Rizzo
,
A.
, and
Nilsson
,
K.
,
2018
, “
Microclimate Assessment Method for Urban Design – A Case Study in Subarctic Climate
,”
Urban Des. Int.
,
23
(
2
), pp.
116
131
.
56.
Chiri
,
G. M.
,
Achenza
,
M.
,
Cani
,
A.
,
Neves
,
L.
,
Tendas
,
L.
, and
Ferrari
,
S.
,
2020
, “
The Microclimate Design Process in Current African Development: The UEM Campus in Maputo, Mozambique
,”
Energies
,
13
(
9
), p.
2316
.
57.
Panagiotou
,
I.
,
Neophytou
,
M. K.
,
Hamlyn
,
D.
, and
Britter
,
R. E.
,
2013
, “
City Breathability as Quantified by the Exchange Velocity and Its Spatial Variation in Real Inhomogeneous Urban Geometries: An Example From Central London Urban Area
,”
Sci. Total. Environ.
,
442
, pp.
466
77
.
58.
Pisello
,
A. L.
,
Castaldo
,
V. L.
,
Piselli
,
C.
,
Pigliautile
,
I.
, and
Cotana
,
F.
,
2016
, “
Microclimate Mitigation for Reducing Summer Overheating in Historic District
,”
In 11th ISES EuroSun Conference
,
Palma, Spain
,
Oct. 12–14
,
International Solar Energy Society
, pp.
105
116
.
59.
Elwy
,
I.
,
Ibrahim
,
Y.
,
Fahmy
,
M.
, and
Mahdy
,
M.
,
2018
, “
Outdoor Microclimatic Validation for Hybrid Simulation Workflow in Hot Arid Climates Against ENVI-met and Field Measurements
,”
Energy Procedia
,
153
, pp.
29
34
.
60.
Deng
,
J.-Y.
, and
Wong
,
N. H.
,
2020
, “
Impact of Urban Canyon Geometries on Outdoor Thermal Comfort in Central Business Districts
,”
Sustain. Cities Soc.
,
53
, p.
101966
.
61.
Santiago
,
J. L.
,
Coceal
,
O.
, and
Martilli
,
A.
,
2013
, “
How to Parametrize Urban-Canopy Drag to Reproduce Wind-Direction Effects Within the Canopy
,”
Boundary Layer Meteorol.
,
149
(
1
), pp.
43
63
.
62.
Salata
,
F.
,
Golasi
,
I.
,
De Lieto Vollaro
,
R.
, and
De Lieto Vollaro
,
A.
,
2016
, “
Urban Microclimate and Outdoor Thermal Comfort. A Proper Procedure to Fit ENVI-Met Simulation Outputs to Experimental Data
,”
Sustain. Cities Soc.
,
26
, pp.
318
343
.
63.
Haseh
,
R. H.
,
Khakzand
,
M.
, and
Ojaghlou
,
M.
,
2018
, “
Optimal Thermal Characteristics of the Courtyard in the Hot and Arid Climate of Isfahan
,”
Buildings
,
8
(
12
), p.
166
.
64.
Fahed
,
J.
,
Kinab
,
E.
,
Ginestet
,
S.
, and
Adolphe
,
L.
,
2020
, “
Impact of Urban Heat Island Mitigation Measures on Microclimate and Pedestrian Comfort in a Dense Urban District of Lebanon
,”
Sustain. Cities Soc.
,
61
, p.
102375
.
65.
Allegrini
,
J.
,
Dorer
,
V.
, and
Carmeliet
,
J.
,
2014
, “
Buoyant Flows in Street Canyons: Validation of CFD Simulations With Wind Tunnel Measurements
,”
Build. Environ.
,
72
, pp.
63
74
.
66.
Tseliou
,
A.
, and
Tsiros
,
I. X.
,
2016
, “
Modeling Urban Microclimate to Ameliorate Thermal Sensation Conditions in Outdoor Areas in Athens (Greece)
,”
Build. Simul.
,
9
(
3
), pp.
251
267
.
67.
Jiang
,
Y. F.
,
Song
,
D. R.
,
Shi
,
T. M.
, and
Han
,
X. M.
,
2018
, “
Adaptive Analysis of Green Space Network Planning for the Cooling Effect of Residential Blocks in Summer: A Case Study in Shanghai
,”
Sustainability
,
10
(
9
), p.
3189
.
68.
Guo
,
D. P.
,
Zhao
,
P.
,
Wang
,
R.
,
Yao
,
R. T.
, and
Hu
,
J. M.
,
2020
, “
Numerical Simulations of the Flow Field and Pollutant Dispersion in an Idealized Urban Area Under Different Atmospheric Stability Conditions
,”
Process. Saf. Environ. Prot.
,
136
, pp.
310
323
.
69.
Ambrosini
,
D.
,
Galli
,
G.
,
Mancini
,
B.
,
Nardi
,
I.
, and
Sfarra
,
S.
,
2014
, “
Evaluating Mitigation Effects of Urban Heat Islands in a Historical Small Center With the ENVI-Met (r) Climate Model
,”
Sustainability
,
6
(
10
), pp.
7013
7029
.
70.
Yola
,
L.
, and
Chin Siong
,
H.
,
2016
, “
Solar Radiation and Urban Wind Effect on Urban Canyon in Hot, Humid Regions
,”
Environ. Behav. Proc. J.
,
1
(
4
), p.
220
.
71.
Karakounos
,
I.
,
Dimoudi
,
A.
, and
Zoras
,
S.
,
2018
, “
The Influence of Bioclimatic Urban Redevelopment on Outdoor Thermal Comfort
,”
Energy and Build.
,
158
, pp.
1266
1274
.
72.
Hadavi
,
M.
, and
Pasdarshahri
,
H.
,
2020
, “
Quantifying Impacts of Wind Speed and Urban Neighborhood Layout on the Infiltration Rate of Residential Buildings
,”
Sustain. Cities Soc.
,
53
, p.
17
.
73.
Dimoudi
,
A.
,
Zoras
,
S.
,
Kantzioura
,
A.
,
Stogiannou
,
X.
,
Kosmopoulos
,
P.
, and
Pallas
,
C.
,
2014
, “
Use of Cool Materials and Other Bioclimatic Interventions in Outdoor Places in Order to Mitigate the Urban Heat Island in a Medium Size City in Greece
,”
Sustain. Cities Soc.
,
13
, pp.
89
96
.
74.
Allegrini
,
J.
, and
Carmeliet
,
J.
,
2017
, “
Coupled CFD and Building Energy Simulations for Studying the Impacts of Building Height Topology and Buoyancy on Local Urban Microclimates
,”
Urban Clim.
,
21
, pp.
278
305
.
75.
Lalosevic
,
M. D.
,
Komatina
,
M. S.
,
Milos
,
M. V.
, and
Rudonja
,
N. R.
,
2018
, “
Green Roofs and Cool Materials as Retrofitting Strategies for Urban Heat Island Mitigation Case Study in Belgrade, Serbia
,”
Thermal Sci.
,
22
(
6
), pp.
2309
2324
.
76.
Hegazy
,
I. R.
, and
Qurnfulah
,
E. M.
,
2020
, “
Thermal Comfort of Urban Spaces Using Simulation Tools Exploring Street Orientation Influence of on the Outdoor Thermal Comfort: A Case Study of Jeddah, Saudi Arabia
,”
Int. J. Low-Carbon Technol.
,
15
(
4
), pp.
594
606
.
77.
Muller
,
N.
,
Kuttler
,
W.
, and
Barlag
,
A. B.
,
2014
, “
Counteracting Urban Climate Change: Adaptation Measures and Their Effect on Thermal Comfort
,”
Theor. Appl. Climatol.
,
115
(
1–2
), pp.
243
257
.
78.
Badas
,
M. G.
,
Ferrari
,
S.
,
Garau
,
M.
, and
Querzoli
,
G.
,
2017
, “
On the Effect of Gable Roof on Natural Ventilation in Two-Dimensional Urban Canyons
,”
J. Wind Eng. Ind. Aerodyn.
,
162
, pp.
24
34
.
79.
Liu
,
Z. X.
,
Zheng
,
S. L.
, and
Zhao
,
L. H.
,
2018
, “
Evaluation of the ENVI-Met Vegetation Model of Four Common Tree Species in a Subtropical Hot-Humid Area
,”
Atmosphere
,
9
(
5
), p.
198
.
80.
Huang
,
J. M.
, and
Chen
,
L. C.
,
2020
, “
A Numerical Study on Mitigation Strategies of Urban Heat Islands in a Tropical Megacity: A Case Study in Kaohsiung City, Taiwan
,”
Sustainability
,
12
(
10
), p.
3952
.
81.
Vollaro
,
A. D. L.
,
De Simone
,
G.
,
Romagnoli
,
R.
,
Vallati
,
A.
, and
Botillo
,
S.
,
2014
, “
Numerical Study of Urban Canyon Microclimate Related to Geometrical Parameters
,”
Sustainability
,
6
(
11
), pp.
7894
7905
.
82.
Chatzidimitriou
,
A.
, and
Axarli
,
K.
,
2017
, “
Street Canyon Geometry Effects on Microclimate and Comfort; A Case Study in Thessaloniki
,”
Proc. Environ. Sci.
,
38
, pp.
643
650
.
83.
Jiang
,
Y. F.
,
Jiang
,
S. D.
, and
Shi
,
T. M.
,
2020
, “
Comparative Study on the Cooling Effects of Green Space Patterns in Waterfront Build-Up Blocks: An Experience From Shanghai
,”
Int. J. Environ. Res. Public Health
,
17
(
22
), p.
8684
.
84.
Allegrini
,
J.
,
Dorer
,
V.
, and
Carmeliet
,
J.
,
2015
, “
Influence of Morphologies on the Microclimate in Urban Neighbourhoods
,”
J. Wind Eng. Ind. Aerodyn.
,
144
, pp.
108
117
.
85.
Ebrahimnejad
,
R.
,
Noori
,
O.
, and
Deihimfard
,
R.
,
2017
, “
Mitigation Potential of Green Structures on Local Urban Microclimate Using ENVI-Met Model
,”
Int. J. Urban Sustainable Dev.
,
9
(
3
), pp.
274
285
.
86.
Ben Ramoul
,
L.
,
Korichi
,
A.
,
Popa
,
C.
,
Zaidi
,
H.
, and
Polidori
,
G.
,
2018
, “
Numerical Study of Flow Characteristics and Pollutant Dispersion Using Three RANS Turbulence Closure Models
,”
Environ. Fluid Mech.
,
19
(
2
), pp.
379
400
.
87.
Kang
,
G.
,
Kim
,
J. J.
, and
Choi
,
W.
,
2020
, “
Computational Fluid Dynamics Simulation of Tree Effects on Pedestrian Wind Comfort in an Urban Area
,”
Sustain. Cities Soc.
,
56
, p.
17
.
88.
Allegrini
,
J.
,
Dorer
,
V.
, and
Carmeliet
,
J.
,
2015
, “
Coupled CFD, Radiation and Building Energy Model for Studying Heat Fluxes in an Urban Environment With Generic Building Configurations
,”
Sustain. Cities Soc.
,
19
, pp.
385
394
.
89.
Fahmy
,
M.
,
El-Hady
,
H.
,
Mahdy
,
M.
, and
Abdelalim
,
M. F.
,
2017
, “
On the Green Adaptation of Urban Developments in Egypt; Predicting Community Future Energy Efficiency Using Coupled Outdoor-Indoor Simulations
,”
Energy Build.
,
153
, pp.
241
261
.
90.
Rui
,
L. Y.
,
Buccolieri
,
R.
,
Gao
,
Z.
,
Ding
,
W. W.
, and
Shen
,
J. L.
,
2018
, “
The Impact of Green Space Layouts on Microclimate and Air Quality in Residential Districts of Nanjing, China
,”
Forests
,
9
(
4
), p.
224
.
91.
Kim
,
J.
,
Lee
,
S. Y.
, and
Kang
,
J.
,
2020
, “
Temperature Reduction Effects of Rooftop Garden Arrangements: A Case Study of Seoul National University
,”
Sustainability
,
12
(
15
), p.
6032
.
92.
Gromke
,
C.
,
Blocken
,
B.
,
Janssen
,
W.
,
Merema
,
B.
,
van Hooff
,
T.
, and
Timmermans
,
H.
,
2015
, “
CFD Analysis of Transpirational Cooling by Vegetation: Case Study for Specific Meteorological Conditions During a Heat Wave in Arnhem, Netherlands
,”
Build. Environ.
,
83
, pp.
11
26
.
93.
Gagliano
,
A.
,
Nocera
,
F.
, and
Aneli
,
S.
,
2017
, “
Computational Fluid Dynamics Analysis for Evaluating the Urban Heat Island Effects
,”
Energy Procedia
,
134
, pp.
508
517
.
94.
Simon
,
H.
,
Lindén
,
J.
,
Hoffmann
,
D.
,
Braun
,
P.
,
Bruse
,
M.
, and
Esper
,
J.
,
2018
, “
Modeling Transpiration and Leaf Temperature of Urban Trees – A Case Study Evaluating the Microclimate Model ENVI-Met Against Measurement Data
,”
Landsc. Urban Plan.
,
174
, pp.
33
40
.
95.
Kim
,
D. J.
,
Lee
,
D. I.
,
Kim
,
J. J.
,
Park
,
M. S.
, and
Lee
,
S. H.
,
2020
, “
Development of a Building-Scale Meteorological Prediction System Including a Realistic Surface Heating
,”
Atmosphere
,
11
(
1
), p.
19
.
96.
Liu
,
C. H.
,
Ng
,
C. T.
, and
Wong
,
C. C. C.
,
2015
, “
A Theory of Ventilation Estimate Over Hypothetical Urban Areas
,”
J. Hazard. Mater.
,
296
, pp.
9
16
.
97.
Heidarinejad
,
M.
,
Nikkho
,
S. K.
,
Liu
,
J.
,
Mattise
,
N.
, and
Srebric
,
J.
,
2017
, “
Quantify Impacts of Local Urban Microclimate on Local Airflow Patterns
,”
Procedia Eng.
,
205
, pp.
1983
1989
.
98.
Toparlar
,
Y.
,
Blocken
,
B.
,
Maiheu
,
B.
, and
Van Heijst
,
G. J. F.
,
2018
, “
Impact of Urban Microclimate on Summertime Building Cooling Demand: A Parametric Analysis for Antwerp, Belgium
,”
Appl. Energy.
,
228
, pp.
852
872
.
99.
Liu
,
D.
,
Hu
,
S.
, and
Liu
,
J.
,
2020
, “
Contrasting the Performance Capabilities of Urban Radiation Field Between Three Microclimate Simulation Tools
,”
Build. Environ.
,
175
, p.
106789
.
100.
Malys
,
L.
,
Musy
,
M.
, and
Inard
,
C.
,
2015
, “
Microclimate and Building Energy Consumption: Study of Different Coupling Methods
,”
Adv. Build. Energy Res.
,
9
(
2
), pp.
151
174
.
101.
Kusumastuty
,
K. D.
,
Poerbo
,
H. W.
, and
Koerniawan
,
M. D.
,
2017
, “
Climate-Sensitive Urban Design Through ENVI-Met Simulation: Case Study in Kemayoran, Jakarta
,” In International Conference on Climate Change – Challenges and Opportunity on Environment Degradation Researches (ICCC) (IOP Conference Series-Earth and Environmental Science, Vol.
129
),
IOP Publishing Ltd
, Surakarta, Indonesia.
102.
Antoniou
,
N.
,
Montazeri
,
H.
,
Neophytou
,
M.
, and
Blocken
,
B.
,
2019
, “
CFD Simulation of Urban Microclimate: Validation Using High-Resolution Field Measurements
,”
Sci. Total. Environ.
,
695
, p.
133743
.
103.
Manandhar
,
P.
,
Bande
,
L.
,
Tsoupos
,
A.
,
Marpu
,
P. R.
, and
Armstrong
,
P.
,
2020
, “
A Study of Local Climate Zones in Abu Dhabi With Urban Weather Stations and Numerical Simulations
,”
Sustainability
,
12
(
1
), p.
156
.
104.
Salata
,
F.
,
Golasi
,
I.
,
Vollaro
,
E. D.
,
Bisegna
,
F.
,
Nardecchia
,
F.
,
Coppi
,
M.
,
Gugliermetti
,
F.
, and
Vollaro
,
A. D.
,
2015
, “
Evaluation of Different Urban Microclimate Mitigation Strategies Through a PMV Analysis
,”
Sustainability
,
7
(
7
), pp.
9012
9030
.
105.
Makropoulou
,
M.
,
2017
, “
Microclimate Improvement of Inner-City Urban Areas in a Mediterranean Coastal City
,”
Sustainability
,
9
(
6
), p.
882
.
106.
Bande
,
L.
,
Afshari
,
A.
,
Al Masri
,
D.
,
Jha
,
M.
,
Norford
,
L.
,
Tsoupos
,
A.
,
Marpu
,
P.
,
Pasha
,
Y.
, and
Armstrong
,
P.
,
2019
, “
Validation of UWG and ENVI-Met Models in an Abu Dhabi District, Based on Site Measurements
,”
Sustainability
,
11
(
16
), p.
4378
.
107.
Mosteiro-Romero
,
M.
,
Maiullari
,
D.
,
Pijpers-van Esch
,
M.
, and
Schlueter
,
A.
,
2020
, “
An Integrated Microclimate-Energy Demand Simulation Method for the Assessment of Urban Districts
,”
Front. Built Environ.
,
6
, p.
553946
.
108.
Hefny Salim
,
M.
,
Heinke Schlünzen
,
K.
, and
Grawe
,
D.
,
2015
, “
Including Trees in the Numerical Simulations of the Wind Flow in Urban Areas: Should We Care?
,”
J. Wind Eng. Ind. Aerodyn.
,
144
, pp.
84
95
.
109.
Muhammad
,
A. A.
,
Marasabessy
,
F.
,
Kusumawanto
,
A.
, and
Nareswari
,
A.
,
2017
, “
The Effect of Spatial Configuration in the Thermal Area of Fort Oranje Public Space in Ternate City
,”
J. Archit. Urbanism
,
41
(
4
), pp.
253
259
.
110.
Coltri
,
P. P.
,
Pinto
,
H. S.
,
Goncalves
,
R. R. D.
,
Zullo
,
J.
, and
Dubreuil
,
V.
,
2019
, “
Low Levels of Shade and Climate Change Adaptation of Arabica Coffee in Southeastern Brazil
,”
Heliyon
,
5
(
2
), p.
e01263
.
111.
Simon
,
H.
,
Sinsel
,
T.
, and
Bruse
,
M.
,
2020
, “
Introduction of Fractal-Based Tree Digitalization and Accurate In-Canopy Radiation Transfer Modelling to the Microclimate Model ENVI-Met
,”
Forests
,
11
(
8
), p.
869
.
112.
Toparlar
,
Y.
,
Blocken
,
B.
,
Vos
,
P.
,
Van Heijst
,
G. J. F.
,
Janssen
,
W. D.
,
Van Hooff
,
T.
,
Montazeri
,
H.
, and
Timmermans
,
H. J. P.
,
2015
, “
CFD Simulation and Validation of Urban Microclimate: A Case Study for Bergpolder Zuid, Rotterdam
,”
Build. Environ.
,
83
, pp.
79
90
.
113.
Perini
,
K.
,
Chokhachian
,
A.
,
Dong
,
S.
, and
Auer
,
T.
,
2017
, “
Modeling and Simulating Urban Outdoor Comfort: Coupling ENVI-Met and TRNSYS by Grasshopper
,”
Energy Build.
,
152
, pp.
373
384
.
114.
Fahmy
,
M.
,
Kamel
,
H.
,
Mokhtar
,
H.
,
Elwy
,
I.
,
Gimiee
,
A.
,
Ibrahim
,
Y.
, and
Abdelalim
,
M.
,
2019
, “
On the Development and Optimization of an Urban Design Comfort Model (UDCM) on a Passive Solar Basis At Mid-Latitude Sites
,”
Climate
,
7
(
1
), p.
1
.
115.
Yang
,
J. Y.
,
Shi
,
B. X.
,
Xia
,
G. Y.
,
Xue
,
Q.
, and
Cao
,
S. J.
,
2020
, “
Impacts of Urban Form on Thermal Environment Near the Surface Region at Pedestrian Height: A Case Study Based on High-Density Built-Up Areas of Nanjing City in China
,”
Sustainability
,
12
(
5
), p.
1737
.
116.
Wang
,
Y.
,
Bakker
,
F.
,
De Groot
,
R.
,
Wortche
,
H.
, and
Leemans
,
R.
,
2015
, “
Effects of Urban Trees on Local Outdoor Microclimate: Synthesizing Field Measurements by Numerical Modelling
,”
Urban Ecosyst.
,
18
(
4
), pp.
1305
1331
.
117.
Sanchez
,
B.
,
Santiago
,
J. L.
,
Martilli
,
A.
,
Martin
,
F.
,
Sorge
,
R.
, and
Quaassdorff
,
C.
,
2017
, “
Modelling Nox Concentrations Through CFD-RANS in An Urban Hot Spot Using High Resolution Traffic Emissions and Meteorology From a Mesoscale Model
,”
Atmos. Environ.
,
163
, pp.
155
165
.
118.
Gnatowska
,
R.
,
2019
, “
Wind-Induced Pressure Loads on Buildings in Tandem Arrangement in Urban Environment
,”
Environ. Fluid Mech.
,
19
(
3
), pp.
699
718
.
119.
Bachir
,
N.
,
Bounoua
,
L.
,
Aiche
,
M.
,
Maliki
,
M.
,
Nigro
,
J.
, and
El Ghazouani
,
L.
,
2021
, “
The Simulation of the Impact of the Spatial Distribution of Vegetation on the Urban Microclimate: A Case Study in Mostaganem
,”
Urban Climate
,
39
, p.
100976
.
120.
Shirzadi
,
M.
,
Mirzaei
,
P. A.
, and
Naghashzadegan
,
M.
,
2017
, “
Improvement of K-Epsilon Turbulence Model for CFD Simulation of Atmospheric Boundary Layer Around a High-Rise Building Using Stochastic Optimization and Monte Carlo Sampling Technique
,”
J. Wind Eng. Ind. Aerodyn.
,
171
, pp.
366
379
.
121.
Jiang
,
G. Y.
,
Hu
,
T. T.
, and
Yang
,
H. K.
,
2019
, “
Effects of Ground Heating on Ventilation and Pollutant Transport in Three-Dimensional Urban Street Canyons With Unit Aspect Ratio
,”
Atmosphere
,
10
(
5
), p.
24
.
122.
Chan
,
S. Y.
, and
Chau
,
C. K.
,
2021
, “
On the Study of the Effects of Microclimate and Park and Surrounding Building Configuration on Thermal Comfort in Urban Parks
,”
Sustain. Cities Soc.
,
64
, p.
102512
.
123.
Tukiran
,
J. M.
,
Ariffin
,
J.
, and
Ghani
,
A. N. A.
,
2017
, “
A Study on the Cooling Effects of Greening for Improving the Outdoor Thermal Environment in Penang, Malaysia
,”
Int. J. Geomate
,
12
(
34
), pp.
62
70
.
124.
Li
,
J. Y.
,
Zheng
,
B. H.
,
Shen
,
W. Q.
,
Xiang
,
Y. F.
,
Chen
,
X.
, and
Qi
,
Z. Y.
,
2019
, “
Cooling and Energy-Saving Performance of Different Green Wall Design: A Simulation Study of a Block
,”
Energies
,
12
(
15
), p.
2912
.
125.
Cruz
,
J. A.
,
Blanco
,
A. C.
,
Garcia
,
J. J.
,
Santos
,
J. A.
, and
Moscoso
,
A. D.
,
2021
, “
Evaluation of the Cooling Effect of Green and Blue Spaces on Urban Microclimate Through Numerical Simulation: A Case Study of Iloilo River Esplanade, Philippines
,”
Sustain. Cities Soc.
,
74
, p.
103184
.
126.
Mehaoued
,
K.
, and
Lartigue
,
B.
,
2019
, “
Influence of a Reflective Glass Facade on Surrounding Microclimate and Building Cooling Load: Case of An Office Building in Algiers
,”
Sustain. Cities Soc.
,
46
, p.
11
.
127.
Erlwein
,
S.
, and
Pauleit
,
S.
,
2021
, “
Trade-Offs Between Urban Green Space and Densification: Balancing Outdoor Thermal Comfort, Mobility, and Housing Demand
,”
Urban Plann.
,
6
(
1
), pp.
5
19
.
128.
Mosteiro-Romero
,
M.
,
Maiullari
,
D.
,
Collins
,
F.
,
Schlueter
,
A.
, and
Timmeren
,
A. V.
,
2019
, “
District-Scale Energy Demand Modeling and Urban Microclimate: A Case Study in the Netherlands
,”
J. Phys.: Conference Ser.
,
1343
(
1
), p.
012003
.
129.
Feng
,
W.
,
Ding
,
W.
,
Zhen
,
M.
,
Zou
,
W.
, and
Wang
,
H.
,
2021
, “
Cooling Effect of Urban Small Green Spaces in Qujiang Campus, Xi’an Jiaotong University, China
,”
Environ. Dev. Sustainability
,
24
(
3
), pp.
4278
4298
.
130.
Nguyen
,
V. T.
,
Nguyen
,
T. C.
, and
Nguyen
,
J.
,
2019
, “
Numerical Simulation of Turbulent Flow and Pollutant Dispersion in Urban Street Canyons
,”
Atmosphere
,
10
(
11
), p.
30
.
131.
Forouzandeh
,
A.
,
2021
, “
Prediction of Surface Temperature of Building Surrounding Envelopes Using Holistic Microclimate ENVI-Met Model
,”
Sustain. Cities Soc.
,
70
, p.
102878
.
132.
Petri
,
A. C.
,
Wilson
,
B.
, and
Koeser
,
A.
,
2019
, “
Planning the Urban Forest: Adding Microclimate Simulation to the Planner’s Toolkit
,”
Land Use Pol.
,
88
, p.
104117
.
133.
Gatto
,
E.
,
Ippolito
,
F.
,
Rispoli
,
G.
,
Carlo
,
O. S.
,
Santiago
,
J. L.
,
Aarrevaara
,
E.
,
Emmanuel
,
R.
, and
Buccolieri
,
R.
,
2021
, “
Analysis of Urban Greening Scenarios for Improving Outdoor Thermal Comfort in Neighbourhoods of Lecce (Southern Italy)
,”
Climate
,
9
(
7
), p.
116
.
134.
Rivas
,
E.
,
Santiago
,
J. L.
,
Lechon
,
Y.
,
Martin
,
F.
,
Arino
,
A.
,
Pons
,
J. J.
, and
Santamaria
,
J. M.
,
2019
, “
CFD Modelling of Air Quality in Pamplona City (Spain): Assessment, Stations Spatial Representativeness and Health Impacts Valuation
,”
Sci. Total. Environ.
,
649
, pp.
1362
1380
.
135.
Ghaffour
,
W.
,
Ouissi
,
M. N.
, and
Velay Dabat
,
M. A.
,
2021
, “
Analysis of Urban Thermal Environments Based on the Perception and Simulation of the Microclimate in the Historic City of Tlemcen
,”
Smart Sustain. Built Environ.
,
10
(
2
), pp.
141
168
.
136.
Shevchenko
,
O. H.
,
Snizhko
,
S. I.
, and
Matviienko
,
M. O.
,
2019
, “
Simulation of the Thermal Comfort Conditions of Urban Areas: A Case Study in Kyiv
,”
Bull. of V N Karazin Kharkiv Natl. Univ.-Ser Geol. Geogr. Ecol.
, (
51
), pp.
186
198
.
137.
Hadavi
,
M.
, and
Pasdarshahri
,
H.
,
2021
, “
Impacts of Urban Buildings on Microclimate and Cooling Systems Efficiency: Coupled CFD and BES Simulations
,”
Sustain. Cities Soc.
,
67
, p.
102740
.
138.
Tsoka
,
S.
,
Tsikaloudaki
,
K.
, and
Theodosiou
,
T.
,
2019
, “
Coupling a Building Energy Simulation Tool With a Microclimate Model to Assess the Impact of Cool Pavements on the Building’s Energy Performance Application in a Dense Residential Area
,”
Sustainability
,
11
(
9
), p.
2519
.
139.
He
,
X.
,
Gao
,
W.
, and
Wang
,
R.
,
2021
, “
Impact of Urban Morphology on the Microclimate Around Elementary Schools: A Case Study From Japan
,”
Build. Environ.
,
206
, p.
108383
.
140.
Wang
,
Y.
,
Zhou
,
D.
,
Wang
,
Y.
,
Fang
,
Y.
,
Yuan
,
Y.
, and
Lv
,
L.
,
2019
, “
Comparative Study of Urban Residential Design and Microclimate Characteristics Based on ENVI-Met Simulation
,”
Indoor Built Environ.
,
28
(
9
), pp.
1200
1216
.
141.
Hosseinzadeh
,
A.
, and
Keshmiri
,
A.
,
2021
, “
Computational Simulation of Wind Microclimate in Complex Urban Models and Mitigation Using Trees
,”
Buildings
,
11
(
3
), p.
112
.
142.
Loibl
,
W.
,
Vuckovic
,
M.
,
Etminan
,
G.
,
Ratheiser
,
M.
,
Tschannett
,
S.
, and
Österreicher
,
D.
,
2021
, “
Effects of Densification on Urban Microclimate-A Case Study for the City of Vienna
,”
Atmosphere
,
12
(
4
), p.
511
.
143.
Xing
,
X.
,
Dong
,
L.
,
Konijnendijk
,
C.
,
Hao
,
P.
,
Fan
,
S.
, and
Niu
,
W.
,
2021
, “
The Impact of Microclimate on the Reproductive Phenology of Female Populus Tomentosa in a Micro-scale Urban Green Space in Beijing
,”
Sustainability
,
13
(
6
), p.
3518
.
144.
Yeo
,
L. B.
,
Ling
,
G. H. T.
,
Tan
,
M. L.
, and
Leng
,
P. C.
,
2021
, “
Interrelationships Between Land Use Land Cover (LULC) and Human Thermal Comfort (HTC): A Comparative Analysis of Different Spatial Settings
,”
Sustainability
,
13
(
1
), p.
382
.
145.
Boppana
,
V. B. L.
,
Xie
,
Z. T.
, and
Castro
,
I. P.
,
2010
, “
Large-Eddy Simulation of Dispersion From Surface Sources in Arrays of Obstacles
,”
Boundary Layer Meteorol.
,
135
(
3
), pp.
433
454
.
146.
Nazarian
,
N.
, and
Kleissl
,
J.
,
2016
, “
Realistic Solar Heating in Urban Areas: Air Exchange and Street-Canyon Ventilation
,”
Build. Environ.
,
95
, pp.
75
93
.
147.
Aristodemou
,
E.
,
Boganegra
,
L. M.
,
Mottet
,
L.
,
Pavlidis
,
D.
,
Constantinou
,
A.
,
Pain
,
C.
,
Robins
,
A.
, and
ApSimon
,
H.
,
2018
, “
How Tall Buildings Affect Turbulent Air Flows and Dispersion of Pollution Within a Neighbourhood
,”
Environ. Pollut.
,
233
, pp.
782
796
.
148.
Duan
,
G.
,
Brimblecombe
,
P.
,
Chu
,
Y. L.
, and
Ngan
,
K.
,
2020
, “
Turbulent Flow and Dispersion Inside and Around Elevated Walkways
,”
Build. Environ.
,
173
, p.
14
.
149.
Cheng
,
W. C.
, and
Liu
,
C. H.
,
2011
, “
Large-Eddy Simulation of Turbulent Transports in Urban Street Canyons in Different Thermal Stabilities
,”
J. Wind Eng. Ind. Aerodyn.
,
99
(
4
), pp.
434
442
.
150.
Pesic
,
D. J.
,
Zigar
,
D. N.
,
Anghel
,
I.
, and
Glisovic
,
S. M.
,
2016
, “
Large Eddy Simulation of Wind Flow Impact on Fire-Induced Indoor and Outdoor Air Pollution in an Idealized Street Canyon
,”
J. Wind Eng. Ind. Aerodyn.
,
155
, pp.
89
99
.
151.
Bazdidi-Tehrani
,
F.
,
Gholamalipour
,
P.
,
Kiamansouri
,
M.
, and
Jadidi
,
M.
,
2019
, “
Large Eddy Simulation of Thermal Stratification Effect on Convective and Turbulent Diffusion Fluxes Concerning Gaseous Pollutant Dispersion Around a High-Rise Model Building
,”
J. Build. Performance Simul.
,
12
(
1
), pp.
97
116
.
152.
Kristof
,
G.
,
Papp
,
B.
,
Wang
,
H.
, and
Hang
,
J.
,
2020
, “
Investigation of the Flow and Dispersion Characteristics of Repeated Orographic Structures by Assuming Transient Wind Forcing
,”
J. Wind Eng. Ind. Aerodyn.
,
136
, p.
15
.
153.
Gousseau
,
P.
,
Blocken
,
B.
, and
van Heijst
,
G. J.
,
2012
, “
Large-Eddy Simulation of Pollutant Dispersion Around a Cubical Building: Analysis of the Turbulent Mass Transport Mechanism by Unsteady Concentration and Velocity Statistics
,”
Environ. Pollut.
,
167
, pp.
47
57
.
154.
Ahmad
,
N. H.
,
Inagaki
,
A.
,
Kanda
,
M.
,
Onodera
,
N.
, and
Aoki
,
T.
,
2017
, “
Large-Eddy Simulation of the Gust Index in an Urban Area Using the Lattice Boltzmann Method
,”
Boundary Layer Meteorol.
,
163
(
3
), pp.
447
467
.
155.
Farhadi
,
H.
,
Faizi
,
M.
, and
Sanaieian
,
H.
,
2019
, “
Mitigating the Urban Heat Island in a Residential Area in Tehran: Investigating the Role of Vegetation, Materials, and Orientation of Buildings
,”
Sustain. Cities Soc.
,
46
, p.
101448
.
156.
Nazarian
,
N.
,
Krayenhoff
,
E. S.
, and
Martilli
,
A.
,
2020
, “
A One-Dimensional Model of Turbulent Flow Through “Urban” Canopies (MLUCM V2.0): Updates Based on Large-eddy Simulation
,”
Geosci. Model Dev.
,
13
(
3
), pp.
937
953
.
157.
Bright
,
V. B.
,
Bloss
,
W. J.
, and
Cai
,
X. M.
,
2013
, “
Urban Street Canyons: Coupling Dynamics, Chemistry and Within-Canyon Chemical Processing of Emissions
,”
Atmos. Environ.
,
68
, pp.
127
142
.
158.
Allegrini
,
J.
, and
Carmeliet
,
J.
,
2017
, “
Evaluation of the Filtered Noise Turbulent Inflow Generation Method
,”
Flow Turbul. Combust.
,
98
(
4
), pp.
1087
1115
.
159.
Huq
,
S.
,
De Roo
,
F.
,
Raasch
,
S.
, and
Mauder
,
M.
,
2019
, “
Vertically Nested Les for High-Resolution Simulation of the Surface Layer in Palm (version 5.0)
,”
Geosci. Model Dev.
,
12
(
6
), pp.
2523
2538
.
160.
Salim
,
S. A. Z. S.
,
Razali
,
M. N. H. A.
,
Ikegaya
,
N.
,
Mohammad
,
A. F.
, and
Ali
,
M. S. M.
,
2020
, “
Numerical Simulation of the Effects of Secondary Roughness in the Form of Extension to Arrays of Terraced Houses on Pedestrian Wind
,”
Sci. Technol. Built. Environ.
,
26
(
7
), p.
13
.
161.
Moonen
,
P.
,
Gromke
,
C.
, and
Dorer
,
V.
,
2013
, “
Performance Assessment of Large Eddy Simulation (LES) for Modeling Dispersion in an Urban Street Canyon With Tree Planting
,”
Atmos. Environ.
,
75
, pp.
66
76
.
162.
Maronga
,
B.
, and
Reuder
,
J.
,
2017
, “
On the Formulation and Universality of Monin–Obukhov Similarity Functions for Mean Gradients and Standard Deviations in the Unstable Surface Layer: Results From Surface-Layer-Resolving Large-Eddy Simulations
,”
J. Atmos. Sci.
,
74
(
4
), pp.
989
1010
.
163.
Li
,
W. J.
,
He
,
Y. P.
,
Zhang
,
Y. W.
,
Su
,
J. W.
,
Chen
,
C. G.
,
Yu
,
C. W.
,
Zhang
,
R. J.
, and
Gu
,
Z. L.
,
2019
, “
LES Simulation of Flow Field and Pollutant Dispersion in a Street Canyon Under Time-Varying Inflows With Timevarying-Simple Approach
,”
Build. Environ.
,
157
, pp.
185
196
.
164.
Yaghoobian
,
N.
,
Kleissl
,
J.
, and
Paw
,
U. K. T.
,
2014
, “
An Improved Three-Dimensional Simulation of the Diurnally Varying Street-Canyon Flow
,”
Boundary Layer Meteorol.
,
153
(
2
), pp.
251
276
.
165.
Reda
,
E.
,
Zulkifli
,
R.
, and
Harun
,
Z.
,
2017
, “
Large Eddy Simulation of Wind Flow Through an Urban Environment in Its Full-Scale Wind Tunnel Models
,”
J. Mech. Eng. Sci.
,
11
(
2
), pp.
2665
2678
.
166.
Liu
,
J. L.
,
Zhang
,
X. L.
,
Niu
,
J. L.
, and
Tse
,
K. T.
,
2019
, “
Pedestrian-Level Wind and Gust Around Buildings With a ’Lift-Up’ Design: Assessment of Influence From Surrounding Buildings by Adopting LES
,”
Build. Simul.
,
12
(
6
), pp.
1107
1118
.
167.
Hellsten
,
A.
,
Luukkonen
,
S. M.
,
Steinfeld
,
G.
,
Kanani-Suhring
,
F.
,
Markkanen
,
T.
,
Jarvi
,
L.
,
Lento
,
J.
,
Vesala
,
T.
, and
Raasch
,
S.
,
2015
, “
Footprint Evaluation for Flux and Concentration Measurements for an Urban-Like Canopy With Coupled Lagrangian Stochastic and Large-Eddy Simulation Models
,”
Boundary Layer Meteorol.
,
157
(
2
), pp.
191
217
.
168.
Tomas
,
J. M.
,
Eisma
,
H. E.
,
Pourquie
,
M. J. B. M.
,
Elsinga
,
G. E.
,
Jonker
,
H. J. J.
, and
Westerweel
,
J.
,
2017
, “
Pollutant Dispersion in Boundary Layers Exposed to Rural-to-Urban Transitions: Varying the Spanwise Length Scale of the Roughness
,”
Boundary Layer Meteorol.
,
163
(
2
), pp.
225
251
.
169.
Hu
,
L. H.
,
Zhang
,
X. C.
,
Zhu
,
W.
,
Ning
,
Z.
, and
Tang
,
F.
,
2015
, “
A Global Relation of Fire Smoke Re-Circulation Behaviour in Urban Street Canyons
,”
J. Civ. Eng. Manag.
,
21
(
4
), pp.
459
469
.
170.
Wang
,
W. W.
,
Ng
,
E.
,
Yuan
,
C.
, and
Raasch
,
S.
,
2017
, “
Large-Eddy Simulations of Ventilation for Thermal Comfort - A Parametric Study of Generic Urban Configurations With Perpendicular Approaching Winds
,”
Urban Clim.
,
20
, pp.
202
227
.
171.
Saeedi
,
M.
, and
Wang
,
B. C.
,
2015
, “
Large-Eddy Simulation of Turbulent Flow and Dispersion Over a Matrix of Wall-Mounted Cubes
,”
Phys. Fluid.
,
27
(
11
), p.
33
.
172.
Dejoan
,
A.
,
Santiago
,
J. L.
,
Martilli
,
A.
,
Martin
,
F.
, and
Pinelli
,
A.
,
2010
, “
Comparison Between Large-Eddy Simulation and Reynolds-Averaged Navier-Stokes Computations for the Must Field Experiment. Part II: Effects of Incident Wind Angle Deviation on the Mean Flow and Plume Dispersion
,”
Boundary Layer Meteorol.
,
135
(
1
), pp.
133
150
.
173.
Liu
,
J. L.
, and
Niu
,
J. L.
,
2016
, “
CFD Simulation of the Wind Environment Around an Isolated High-Rise Building: An Evaluation of SRANS, LES and DES Models
,”
Build. Environ.
,
96
, pp.
91
106
.
174.
Hayati
,
A. N.
,
Stoll
,
R.
,
Pardyjak
,
E. R.
,
Harman
,
T.
, and
Kim
,
J. J.
,
2019
, “
Comparative Metrics for Computational Approaches in Non-Uniform Street Canyon Flows
,”
Build. Environ.
,
158
, pp.
16
27
.
175.
Santiago
,
J. L.
,
Dejoan
,
A.
,
Martilli
,
A.
,
Martin
,
F.
, and
Pinelli
,
A.
,
2010
, “
Comparison Between Large-Eddy Simulation and Reynolds-Averaged Navier–Stokes Computations for the Must Field Experiment. Part I: Study of the Flow for an Incident Wind Directed Perpendicularly to the Front Array of Containers
,”
Boundary Layer Meteorol.
,
135
(
1
), pp.
109
132
.
176.
Antoniou
,
N.
,
Montazeri
,
H.
,
Wigo
,
H.
,
Neophytou
,
M. K. A.
,
Blocken
,
B.
, and
Sandberg
,
M.
,
2017
, “
CFD and Wind-Tunnel Analysis of Outdoor Ventilation in a Real Compact Heterogeneous Urban Area: Evaluation Using ‘Air Delay’
,”
Build. Environ.
,
126
, pp.
355
372
.
177.
Aristodemou
,
E.
,
Bentham
,
T.
,
Pain
,
C.
,
Colvile
,
R.
,
Robins
,
A.
, and
ApSimon
,
H.
,
2009
, “
A Comparison of Mesh-Adaptive LES With Wind Tunnel Data for Flow Past Buildings: Mean Flows and Velocity Fluctuations
,”
Atmos. Environ.
,
43
(
39
), pp.
6238
6253
.
178.
Cai
,
X. M.
,
2012
, “
Effects of Wall Heating on Flow Characteristics in a Street Canyon
,”
Boundary Layer Meteorol.
,
142
(
3
), pp.
443
467
.
179.
Yaghoobian
,
N.
,
Kleissl
,
J.
, and
Krayenhoff
,
E. S.
,
2010
, “
Modeling the Thermal Effects of Artificial Turf on the Urban Environment
,”
J. Appl. Meteorol. Climatol.
,
49
(
3
), pp.
332
345
.
180.
Yaghoobian
,
N.
, and
Kleissl
,
J.
,
2012
, “
Effect of Reflective Pavements on Building Energy Use
,”
Urban Clim.
,
2
, pp.
25
42
.
182.
Lee
,
M.
,
Park
,
G.
,
Park
,
C.
, and
Kim
,
C.
,
2020
, “
Improvement of Grid Independence Test for Computational Fluid Dynamics Model of Building Based on Grid Resolution
,”
Adv. Civil Eng.
,
2020
, pp.
1
11
.
183.
Ascher
,
U. M.
,
Ruuth
,
S. J.
, and
Spiteri
,
R. J.
,
1997
, “
Implicit-Explicit Runge-Kutta Methods for Time-Dependent Partial Differential Equations
,”
Appl. Numer. Math.
,
25
(
2–3
), pp.
151
167
.
184.
US EPA
,
2002
, EPA Air Pollution Control Cost Manual. U.S. Environmental Protection Agency.
185.
Becker
,
F.
, and
Li
,
Z.
,
1995
, “
Surface Temperature and Emissivity at Various Scales: Definition, Measurement and Related Problems
,”
Remote Sens. Rev.
,
12
(
3–4
), pp.
225
253
.
186.
Norman
,
J. M.
, and
Becker
,
F.
,
1995
, “
Terminology in Thermal Infrared Remote Sensing of Natural Surfaces
,”
Agric. Forest Meteorol.
,
77
(
3–4
), pp.
153
166
.
187.
Norman
,
J. M.
,
Divakarla
,
M.
, and
Goel
,
N. S.
,
1995
, “
Algorithms for Extracting Information From Remote Thermal-IR Observations of the Earth’s Surface
,”
Remote Sens. Environ.
,
51
(
1
), pp.
157
168
.
188.
Prata
,
A. J.
,
Caselles
,
V.
,
Coll
,
C.
,
Sobrino
,
J. A.
, and
Ottlé
,
C.
,
1995
, “
Thermal Remote Sensing of Land Surface Temperature From Satellites: Current Status and Future Prospects
,”
Remote Sens. Rev.
,
12
(
3–4
), pp.
175
224
.
189.
Quattrochi
,
D. A.
, and
Ridd
,
M. K.
,
1994
, “
Measurement and Analysis of Thermal Energy Responses From Discrete Urban Surfaces Using Remote Sensing Data
,”
Int. J. Remote Sens.
,
15
(
10
), pp.
1991
2022
.
190.
Ho
,
H. C.
,
Knudby
,
A.
,
Xu
,
Y.
,
Hodul
,
M.
, and
Aminipouri
,
M.
,
2016
, “
A Comparison of Urban Heat Islands Mapped Using Skin Temperature, Air Temperature, and Apparent Temperature (Humidex), for the Greater Vancouver Area
,”
Sci. Total. Environ.
,
544
, pp.
929
938
.
191.
Stoll
,
M. J.
, and
Brazel
,
A. J.
,
1992
, “
Surface-Air Temperature Relationships in the Urban Environment of Phoenix, Arizona
,”
Phys. Geogr.
,
13
(
2
), pp.
160
179
.
192.
Roth
,
M.
,
Oke
,
T. R.
, and
Emery
,
W. J.
,
1989
, “
Satellite-Derived Urban Heat Islands From Three Coastal Cities and the Utilization of Such Data in Urban Climatology
,”
Int. J. Remote Sens.
,
10
(
11
), pp.
1699
1720
.
193.
Voogt
,
J.
, and
Oke
,
T.
,
2003
, “
Thermal Remote Sensing of Urban Climates
,”
Remote Sens. Environ.
,
86
, pp.
370
384
.
194.
Muller
,
C. L.
,
Chapman
,
L.
,
Grimmond
,
C. S. B.
,
Young
,
D. T.
, and
Cai
,
X.
,
2013
, “
Sensors and the City: A Review of Urban Meteorological Networks
,”
Int. J. Climatol.
,
33
(
7
), pp.
1585
1600
.
195.
Muller
,
C. L.
,
Chapman
,
L.
,
Grimmond
,
C. S. B.
,
Young
,
D. T.
, and
Cai
,
X. -M.
,
2013
, “
Toward a Standardized Metadata Protocol for Urban Meteorological Networks
,”
Bull. Am. Meteorol. Soc.
,
94
(
8
), pp.
1161
1185
.
196.
Bassett
,
R.
,
Cai
,
X.
,
Chapman
,
L.
,
Heaviside
,
C.
,
Thornes
,
J. E.
,
Muller
,
C. L.
,
Young
,
D. T.
, and
Warren
,
E. L.
,
2016
, “
Observations of Urban Heat Island Advection From a High-Density Monitoring Network
,”
Q. J. R. Metereol. Soc.
,
142
(
699
), pp.
2434
2441
.
197.
Chapman
,
L.
,
Muller
,
C. L.
,
Young
,
D. T.
,
Warren
,
E. L.
,
Grimmond
,
C. S. B.
,
Cai
,
X.-M.
, and
Ferranti
,
E. J. S.
,
2015
, “
The Birmingham Urban Climate Laboratory: An Open Meteorological Test Bed and Challenges of the Smart City
,”
Bull. Am. Meteorol. Soc.
,
96
(
9
), pp.
1545
1560
.
198.
Mikami
,
T.
,
Ando
,
H.
,
Morishima
,
W.
,
Izumi
,
T.
, and
Shioda
,
T.
,
2003
, “
A New Urban Heat Island Monitoring System in Tokyo
,”
The Fifth International Conference on Urban Climate
,
Lodz, Poland
,
Sept. 1–5
.
199.
Takahashi
,
K.
,
Mikami
,
T.
, and
Takahashi
,
H.
,
2009
, “
Influence of the Urban Heat Island Phenomenon in Tokyo on Land and Sea Breezes
,”
The Seventh International Conference on Urban Climate
,
Yokohama, Japan
,
June 29–July 3
.
200.
Coronel
,
A. S.
,
Feldman
,
S. R.
,
Jozami
,
E.
,
Facundo
,
K.
,
Piacentini
,
R. D.
,
Dubbeling
,
M.
, and
Escobedo
,
F. J.
,
2015
, “
Effects of Urban Green Areas on Air Temperature in a Medium-Sized Argentinian City
,”
AIMS Environ. Sci.
,
2
(
3
), pp.
803
826
.
201.
Basara
,
J. B.
,
Illston
,
B. G.
,
Fiebrich
,
C. A.
,
Browder
,
P. D.
,
Morgan
,
C. R.
,
McCombs
,
A.
,
Bostic
,
J. P.
,
McPherson
,
R. A.
,
Schroeder
,
A. J.
, and
Crawford
,
K. C.
,
2010
, “
The Oklahoma City Micronet
,”
Meteorol. Appl.
,
18
(
3
), pp.
252
261
.
202.
Tan
,
J.
,
Yang
,
L.
,
Grimmond
,
C. S. B.
,
Shi
,
J.
,
Gu
,
W.
,
Chang
,
Y.
,
Hu
,
P.
,
Sun
,
J.
,
Ao
,
X.
, and
Han
,
Z.
,
2015
, “
Urban Integrated Meteorological Observations: Practice and Experience in Shanghai, China
,”
Bull. Am. Meteorol. Soc.
,
96
(
1
), pp.
85
102
.
203.
Mallen
,
E.
,
Bakin
,
J.
,
Stone
,
B.
,
Sivakumar
,
R.
, and
Lanza
,
K.
,
2020
, “
Thermal Impacts of Built and Vegetated Environments on Local Microclimates in an Urban University Campus
,”
Urban Clim.
,
32
, p.
100640
.
204.
Ide
,
H.
, and
Rose
,
J.
,
2018
, “
Master Plan to Robust Practice: The Evolution of Sustainable Landscape Practices at Georgia Institute of Technology
,”
J. Green Build.
,
13
(
3
), pp.
179
192
.
205.
Catlett
,
C.
,
Beckman
,
P.
,
Sankaran
,
R.
, and
Galvin
,
K.
,
2017
, “
Array of Things: A Scientific Research Instrument in the Public Way
,” SCOPE ’17: Proceedings of the 2nd International Workshop on Science of Smart City Operations and Platforms Engineering,
Pittsburgh, PA, Apr. 18–21, Association for Computing Machinery
, pp.
26
33
, .
206.
Dey
,
S.
,
Brown
,
J. M.
, and
Joshi
,
Y.
,
2020
, “
Packaging Environmental Sensors for Monitoring Urban-Microclimates
,”
ASME J. Eng. Sustainable Build. Cities
,
1
(
3
), p.
031001
.
207.
LoRa Alliance®
,
2020
, What is lorawan® Specification. https://lora-alliance.org/about-lorawan/https://lora-alliance.org/about-lorawan/.
208.
Addabbo
,
T.
,
Fort
,
A.
,
Mugnaini
,
M.
,
Parri
,
L.
,
Pozzebon
,
A.
, and
Vignoli
,
V.
,
2019
, “
Smart Sensing in Mobility: A Lorawan Architecture for Pervasive Environmental Monitoring
,”
2019 IEEE 5th International Forum on Research and Technology for Society and Industry (RTSI)
,
Florence, Italy
,
Sept. 9–12
,
IEEE
, pp.
421
426
.
209.
Kadir
,
E. A.
,
Efendi
,
A.
, and
Rosa
,
S. L.
,
2018
, “
Application of Lorawan Sensor and IOT For Environmental Monitoring in Riau Province Indonesia
,”
2018 5th International Conference on Electrical Engineering, Computer Science and Informatics (EECSI)
,
Malang, Indonesia
,
Oct. 16–18
,
IEEE
, pp.
281
285
.
210.
Rahim
,
H.
,
Ghazel
,
C.
, and
Saidane
,
L. A.
,
2018
, “
An Alternative Data Gathering of the Air Pollutants in the Urban Environment Using Lora and Lorawan
,”
2018 14th International Wireless Communications & Mobile Computing Conference (IWCMC)
,
Limassol, Cyprus
,
June 25–29
,
IEEE
, pp.
1237
1242
.
211.
Sendra
,
S.
,
García
,
L.
,
Lloret
,
J.
,
Bosch
,
I.
, and
Vega-Rodríguez
,
R.
,
2020
, “
Lorawan Network for Fire Monitoring in Rural Environments
,”
Electronics
,
9
(
3
), p.
531
.
212.
Wang
,
Y.
,
Huang
,
Y.
, and
Song
,
C.
,
2019
, “
A New Smart Sensing System Using Lorawan for Environmental Monitoring
,” 2019 Computing, Communications and IoT Applications (ComComAp),
Shenzhen, China
,
Oct. 26–28
,
IEEE
, pp.
347
351
.
213.
Tonekaboni
,
N. H.
,
Ramaswamy
,
L.
,
Mishra
,
D.
,
Grundstein
,
A.
,
Kulkarni
,
S.
, and
Yin
,
Y.
,
2018
, “
Scouts: A Smart Community Centric Urban Heat Monitoring Framework
,”
1st ACM SIGSPATIAL Workshop on Advances in Resilient and Intelligent Cities (ARIC’18)
,
Seattle, WA
,
Nov. 6
,
Association for Computing Machinery
, pp.
27
30
.
214.
Tonekaboni
,
N. H.
,
Ramaswamy
,
L.
, and
Sachdev
,
S.
,
2019
, “
A Mobile and Web-Based Approach for Targeted and Proactive Participatory Sensing
,” CollaborateCom 2019: Collaborative Computing: Networking, Applications and Worksharing,
Springer International Publishing
, pp.
27
30
.
215.
Tonekaboni
,
N. H.
,
Ramaswamy
,
L.
,
Mishra
,
D.
, and
Omidvar
,
S.
,
2020
, “
Spatio-Temporal Coverage Enhancement in Drive-By Sensing Through Utility-Aware Mobile Agent Selection
.” arXiv pre-print server.
216.
Hoffman
,
J. S.
,
Shandas
,
V.
, and
Pendleton
,
N.
,
2020
, “
The Effects of Historical Housing Policies on Resident Exposure to Intra-Urban Heat: A Study of 108 US Urban Areas
,”
Climate
,
8
(
1
), pp.
12
.
You do not currently have access to this content.