Abstract

Direct-contact heat exchangers have great potential for waste-heat utilization. This study established a multi-objective evaluation model of the volumetric heat-transfer coefficient, entransy dissipation, and uniformity of the temperature difference field of the direct-contact heat exchanger. The optimal operating parameters for the heat exchanger were obtained by experimentally investigating the relationship between the operating parameters and the volumetric heat-transfer coefficient, entransy dissipation, and uniformity of the temperature difference field. The results indicated that the smaller the entransy, the greater the effectiveness of the heat exchanger in the direct-contact heat exchanger. The results also indicated that the volumetric heat-transfer coefficient increased with the increase in the flowrate ratio and initial temperature difference. The study found that entransy demonstrated the smallest dissipation and the largest effectiveness of the heat exchanger when the initial temperature difference was 120 °C and the flow ratio was 6:1. This study has guiding significance for the optimal design of direct-contact heat exchangers.

References

1.
Campana
,
F.
,
Bianchi
,
M.
,
Branchini
,
L.
,
De Pascale
,
A.
,
Peretto
,
A.
,
Baresi
,
M.
,
Fermi
,
A.
,
Rossetti
,
N.
, and
Vescovo
,
R.
,
2013
, “
ORC Waste Heat Recovery in European Energy Intensive Industries: Energy and GHG Savings
,”
Energy Convers. Manage.
,
76
, pp.
244
252
.
2.
Huang
,
J. W.
,
Xu
,
J. X.
,
Sang
,
X. L.
,
Wang
,
H. T.
, and
Wang
,
H.
,
2014
, “
Quantifying the Synergy of Bubble Swarm Patterns and Heat Transfer Performance Using Computational Homology
,”
Int. J. Heat Mass Transfer
,
75
, pp.
497
503
.
3.
Hyun
,
Y. J.
,
Hyun
,
J. H.
,
Chun
,
W. G.
, and
Kang
,
Y. H.
,
2005
, “
An Experimental Investigation Into the Operation of a Direct Contact Heat Exchanger for Solar Exploitation
,”
Int. Commun. Heat Mass Transfer
,
32
(
3–4
), pp.
425
434
.
4.
Kalantari
,
H.
,
Amiri
,
L.
, and
Ghoreishi-Madiseh
,
S. A.
,
2022
, “
Analysis of the Performance of Direct Contact Heat Exchange Systems for Application in Mine Waste Heat Recovery
,”
Int. J. Energy Res.
,
46
(
1
), pp.
290
307
.
5.
Zhu
,
K.
,
Xia
,
J.
,
Xie
,
X.
, and
Jiang
,
Y.
,
2014
, “
Total Heat Recovery of Gas Boiler by Absorption Heat Pump and Direct-Contact Heat Exchanger
,”
Appl. Therm. Eng.
,
71
(
1
), pp.
213
218
.
6.
Maalouf
,
S.
,
Ksayer
,
E. B.
, and
Clodic
,
D.
,
2016
, “
Investigation of Direct Contact Condensation for Wet Flue-Gas Waste Heat Recovery Using Organic Rankine Cycle
,”
Energy Convers. Manage.
,
107
, pp.
96
102
.
7.
Mahood
,
H. B.
,
Campbell
,
A. N.
,
Thorpe
,
R. B.
, and
Sharif
,
A. O.
,
2015
, “
Experimental Measurements and Theoretical Prediction for the Volumetric Heat Transfer Coefficient of a Three-Phase Direct Contact Condenser
,”
Int. Commun. Heat Mass Transfer
,
66
, pp.
180
188
.
8.
Qian
,
X. D.
, and
Li
,
Z. X.
,
2011
, “
Analysis of Entransy Dissipation in Heat Exchangers
,”
Int. J. Therm. Sci.
,
50
(
4
), pp.
608
614
.
9.
Li
,
B.
,
Li
,
Z.
,
Yang
,
P.
,
Xu
,
J.
, and
Wang
,
H.
,
2022
, “
Experimental Investigation of Bubble Group and Temperature Distribution Uniformity in the Direct Contact Boiling Heat Transfer Process
,”
Exp. Therm. Fluid Sci.
,
134
, p.
110620
.
10.
Sideman
,
S.
, and
Shabtai
,
H.
,
1964
, “
Direct-Contact Heat Transfer Between a Single Drop and an Immiscible Liquid Medium
,”
Can. J. Chem. Eng.
,
42
(
3
), pp.
107
116
.
11.
Sideman
,
S.
, and
Taitel
,
Y.
,
1964
, “
Direct-Contact Heat Transfer With Change of Phase: Evaporation of Drops in an Immiscible Liquid Medium
,”
Int. J. Heat Mass Transfer
,
7
(
11
), pp.
1273
1289
.
12.
Sideman
,
S.
, and
Hirsch
,
G.
,
1965
, “
Direct Contact Heat Transfer With Change of Phase: Condensation of Single Vapor Bubbles in an Immiscible Liquid Medium. Preliminary Studies
,”
"AICHE J.
,
11
(
6
), pp.
1019
1025
.
13.
Sideman
,
S.
, and
Gat
,
Y.
,
1966
, “
Direct Contact Heat Transfer With Change of Phase: Spray-Column Studies of a Three-Phase Heat Exchanger
,”
AICHE J.
,
12
(
2
), pp.
296
303
.
14.
Isenberg
,
J.
, and
Sideman
,
S.
,
1970
, “
Direct Contact Heat Transfer With Change of Phase: Bubble Condensation in Immiscible Liquids
,”
Int. J. Heat Mass Transfer
,
13
(
6
), pp.
997
1011
.
15.
Moalem
,
D.
,
Sideman
,
S.
,
Orell
,
A.
, and
Hetsroni
,
G.
,
1973
, “
Direct Contact Heat Transfer With Change of Phase: Condensation of a Bubble Train
,”
Int. J. Heat Mass Transfer
,
16
(
12
), pp.
2305
2319
.
16.
Iciek
,
J.
,
1982
, “
The Hydrodynamics of a Free, Liquid Jet and Their Influence on Direct Contact Heat Transfer—I Hydrodynamics of a Free, Cylindrical Liquid Jet
,”
Int. J. Multiphase Flow
,
8
(
3
), pp.
239
249
.
17.
Aya
,
I.
, and
Nariai
,
H.
,
1991
, “
Evaluation of Heat-Transfer Coefficient at Direct-Contact Condensation of Cold Water and Steam
,”
Nucl. Eng. Des.
,
131
(
1
), pp.
17
24
.
18.
Younis
,
L.
, and
Viskanta
,
R.
,
1993
, “
Experimental Determination of the Volumetric Heat Transfer Coefficient Between Stream of Air and Ceramic Foam
,”
Int. J. Heat Mass Transfer
,
36
(
6
), pp.
1425
1434
.
19.
Mahood
,
H. B.
,
2008
, “
Direct-Contact Heat Transfer of a Single Volatile Liquid Drop Evaporation in an Immiscible Liquid
,”
Desalination
,
222
(
1–3
), pp.
656
665
.
20.
Abdulrahman
,
M. W.
,
2015
, “
Experimental Studies of Direct Contact Heat Transfer in a Slurry Bubble Column at High Gas Temperature of a Helium–Water–Alumina System
,”
Appl. Therm. Eng.
,
91
, pp.
515
524
.
21.
Mahood
,
H. B.
,
Campbell
,
A. N.
,
Thorpe
,
R. B.
, and
Sharif
,
A. O.
,
2015
, “
Heat Transfer Efficiency and Capital Cost Evaluation of a Three-Phase Direct Contact Heat Exchanger for the Utilisation of Low-Grade Energy Sources
,”
Energy Convers. Manage.
,
106
, pp.
101
109
.
22.
Baqir
,
A. S.
,
Mahood
,
H. B.
,
Campbell
,
A. N.
, and
Griffiths
,
A. J.
,
2016
, “
Measuring the Average Volumetric Heat Transfer Coefficient of a Liquid–Liquid–Vapour Direct Contact Heat Exchanger
,”
Appl. Therm. Eng.
,
103
, pp.
47
55
.
23.
Mahood
,
H. B.
,
Campbell
,
A. N.
,
Thorpe
,
R. B.
, and
Sharif
,
A. O.
,
2018
, “
Measuring the Overall Volumetric Heat Transfer Coefficient in a Vapor–Liquid–Liquid Three-Phase Direct Contact Heat Exchanger
,”
Heat Transfer Eng.
,
39
(
3
), pp.
208
216
.
24.
Mahood
,
H. B.
,
Campbell
,
A. N.
,
Baqir
,
A. S.
,
Sharif
,
A. O.
, and
Thorpe
,
R. B.
,
2018
, “
Convective Heat Transfer Measurements in a Vapour–Liquid–Liquid Three-Phase Direct Contact Heat Exchanger
,”
Heat Mass Transfer
,
54
(
6
), pp.
1697
1705
.
25.
Xiao
,
Q. T.
,
Pan
,
J. X.
,
Lv
,
Z. H.
,
Xu
,
J. X.
, and
Wang
,
H.
,
2017
, “
Measure of Bubble Non-uniformity Within Circular Region in a Direct Contact Heat Exchanger
,”
Int. J. Heat Mass Transfer
,
110
, pp.
257
261
.
26.
Xu
,
J.
,
Xiao
,
Q.
,
Fei
,
Y.
,
Wang
,
S.
, and
Huang
,
J.
,
2016
, “
Accurate Estimation of Mixing Time in a Direct Contact Boiling Heat Transfer Process Using Statistical Methods
,”
Int. Commun. Heat Mass Transfer
,
75
, pp.
162
168
.
27.
Fei
,
Y.
,
Xiao
,
Q. T.
,
Xu
,
J. X.
,
Pan
,
J. X.
,
Wang
,
S. B.
,
Wang
,
H.
, and
Huang
,
J. W.
,
2015
, “
A Novel Approach for Measuring Bubbles Uniformity and Mixing Efficiency in a Direct Contact Heat Exchanger
,”
Energy
,
93
, pp.
2313
2320
.
28.
Fu
,
H.
,
2020
, “
Heat Transfer and Residence Time Distribution of Liquid Flow in Direct Contact Evaporation Heat Exchanger
,”
Chem. Eng. Process.
,
149
, p.
107829
.
29.
Guo
,
Z.-Y.
,
Zhu
,
H.-Y.
, and
Liang
,
X.-G.
,
2007
, “
Entransy—A Physical Quantity Describing Heat Transfer Ability
,”
Int. J. Heat Mass Transfer
,
50
(
13–14
), pp.
2545
2556
.
30.
Bejan
,
A.
,
1979
, “
A Study of Entropy Generation in Fundamental Convective Heat Transfer
,”
ASME J. Heat Transfer-Trans. ASME
,
101
(
4
), pp.
718
725
.
31.
Guo
,
Z.-Y.
,
Zhou
,
S.-Q.
,
Li
,
Z.-X.
, and
Chen
,
L.-G.
,
2002
, “
Theoretical Analysis and Experimental Confirmation of the Uniformity Principle of Temperature Difference Field in Heat Exchanger
,”
Int. J. Heat Mass Transfer
,
45
(
10
), pp.
2119
2127
.
32.
Bejan
,
A.
,
1977
, “
The Concept of Irreversibility in Heat Exchanger Design: Counterflow Heat Exchangers for Gas-to-Gas Applications
,”
ASME J. Heat Transfer-Trans. ASME
,
99
(
3
), pp.
374
380
.
33.
Grazzini
,
G.
, and
Gori
,
F.
,
1988
, “
Entropy Parameters for Heat Exchanger Design
,”
Int. J. Heat Mass Transfer
,
31
(
12
), pp.
2547
2554
.
34.
Goh
,
L. H. K.
,
Hung
,
Y. M.
,
Chen
,
G. M.
, and
Tso
,
C. P.
,
2021
, “
Entropy Generation Analysis of Turbulent Convection in a Heat Exchanger With Self-Rotating Turbulator Inserts
,”
Int. J. Therm. Sci.
,
160
, p.
106652
.
35.
Akbarzadeh
,
M.
,
Rashidi
,
S.
,
Keshmiri
,
A.
, and
Shokri
,
N.
,
2020
, “
The Optimum Position of Porous Insert for a Double-Pipe Heat Exchanger Based on Entropy Generation and Thermal Analysis
,”
J. Therm. Anal. Calorim.
,
139
(
1
), pp.
411
426
.
36.
Wang
,
C.
,
Liu
,
M.
,
Zhao
,
Y.
,
Qiao
,
Y.
, and
Yan
,
J.
,
2018
, “
Entropy Generation Analysis on a Heat Exchanger With Different Design and Operation Factors During Transient Processes
,”
Energy
,
158
, pp.
330
342
.
37.
Shah
,
R. K.
, and
Skiepko
,
T.
,
2004
, “
Entropy Generation Extrema and Their Relationship With Heat Exchanger Effectiveness—Number of Transfer Unit Behavior for Complex Flow Arrangements
,”
ASME J. Heat Transfer-Trans. ASME
,
126
(
6
), pp.
994
1002
.
38.
Chen
,
Q.
,
2013
, “
Entransy Dissipation-Based Thermal Resistance Method for Heat Exchanger Performance Design and Optimization
,”
Int. J. Heat Mass Transfer
,
60
, pp.
156
162
.
39.
Kim
,
K. H.
, and
Kim
,
S. W.
,
2015
, “
Entransy Dissipation Analysis for Optimal Design of Heat Exchangers
,”
J. Autom. Control Eng.
,
3
(
2
), pp.
87
89
.
40.
Cheng
,
X.
, and
Liang
,
X.
,
2012
, “
Computation of Effectiveness of Two-Stream Heat Exchanger Networks Based on Concepts of Entropy Generation, Entransy Dissipation and Entransy-Dissipation-Based Thermal Resistance
,”
Energy Convers. Manage.
,
58
, pp.
163
170
.
41.
Wang
,
S.
,
Jian
,
G.
,
Wang
,
J.
,
Sun
,
L.
, and
Wen
,
J.
,
2018
, “
Application of Entransy-Dissipation-Based Thermal Resistance for Performance Optimization of Spiral-Wound Heat Exchanger
,”
Int. J. Heat Mass Transfer
,
116
, pp.
743
750
.
You do not currently have access to this content.