Abstract

As the volume of natural draft wet cooling towers (NDWCTs) continues to increase, the influence of ambient air on the thermal performance of the NDWCT is not clear. Therefore, the main parameters such as gas–water ratio, circulating water temperature difference, and heat transfer in each zone were calculated, and the temperature field and humidity field were also investigated. The results showed that the ambient temperature had the greatest influence on the cooling capacity of the NDWCT and the increase of ambient temperature led the circulating water temperature difference decreases the most, which was 7.63 °C (74.15%). The increase of relative humidity and atmospheric pressure led to an increase in convective heat transfer and the decrease in evaporative mass transfer, while both the convective heat transfer and evaporative mass transfer reduced with the decreasing temperature. This study establishes a theoretical foundation for optimizing of the thermal performance and energy-saving design of NDWCTs.

References

1.
He
,
R. Y.
,
Deng
,
X. W.
,
Li
,
Y. C.
,
Dong
,
Z. K.
,
Gao
,
X. X.
,
Lu
,
L.
,
Zhou
,
Y.
,
Wu
,
J. Z.
, and
Yang
,
H. X.
,
2023
, “
Three-Dimensional Yaw Wake Model Development With Validations From Wind Tunnel Experiments
,”
Energy
,
282
(
1
), p.
128402
.
2.
Deng
,
W. P.
,
Sun
,
F. Z.
,
Chen
,
K.
, and
Zhang
,
X. Y.
,
2022
, “
New Retrofit Method to Cooling Capacity Improvement of Mechanical Draft Wet Cooling Tower Group
,”
Int. J. Heat. Mass Transf.
,
188
(
1
), p.
122589
.
3.
Chen
,
X. H.
,
Sun
,
F. Z.
,
Yang
,
S. S.
,
Xia
,
L. J.
, and
Zhang
,
X.
,
2023
, “
Effect Mechanism of Wind Shields on the Thermal Performance for Mechanical Draft Wet Cooling Towers
,”
Appl. Therm. Eng.
,
219
(
Part A
), p.
119452
.
4.
Zhang
,
Z. Q.
,
Gao
,
M.
,
Wang
,
M. Y.
,
Guan
,
H. J.
,
Dang
,
Z. G.
,
He
,
S. Y.
, and
Sun
,
F. Z.
,
2019
, “
Field Test Study on Thermal and Ventilation Performance for Natural Draft Wet Cooling Tower After Structural Improvement
,”
Appl. Therm. Eng.
,
155
(
4
), pp.
305
312
.
5.
Chen
,
Y. L.
,
Sun
,
F. Z.
,
Wang
,
H. G.
,
Mu
,
N. S.
, and
Gao
,
M.
,
2011
, “
Experimental Research of the Cross Walls Effect on the Thermal Performance of Wet Cooling Towers Under Crosswind Conditions
,”
Appl. Therm. Eng.
,
31
(
17–18
), pp.
4007
4013
.
6.
Jiang
,
L.
,
Zhang
,
Z. Q.
,
Sang
,
P.
,
Dong
,
L. F.
,
He
,
S. Y.
, and
Gao
,
M.
,
2022
, “
Influence of Noise Barrier and Louver on Ventilation and Thermal Performance of Wet Cooling Towers Under Crosswind Conditions
,”
Int. J. Therm. Sci.
,
173
, p.
107364
.
7.
Deng
,
W. P.
,
Sun
,
F. Z.
,
Chen
,
K.
, and
Zhang
,
X. Y.
,
2023
, “
Numerical Study on Performance of Hybrid Mechanical Draft Wet Cooling Tower
,”
Int. J. Heat. Mass Transf.
,
201
(
1
), p.
123574
.
8.
Zhang
,
Z.Q.
,
Gao
,
M.
,
Dang
,
Z.G.
,
He
,
S.Y.
, and
Sun
,
F.Z
,
2019
, “
An Exploratory Research on Performance Improvement of Super-Large Natural Draft Wet Cooling Tower Based on the Reconstructed Dry-Wet Hybrid Rain Zone
,”
Int. J. Heat. Mass Transf.
,
142
, p.
118465
.
9.
Zhang
,
Z. Q.
,
Wang
,
M. Y.
,
Liu
,
Y.
,
Gao
,
M.
,
He
,
S. Y.
, and
Shi
,
Y. T.
,
2020
, “
An Exploratory Research on Performance Improvement of Super-Large Natural Draft Wet Cooling Tower Based on the Reconstructed Dry-Wet Hybrid Rain Zone, Part 2: Crosswind Effects
,”
Int. J. Heat. Mass Transf.
,
160
, p.
120225
.
10.
Chen
,
X. H.
,
Sun
,
F. Z.
,
Chen
,
Y. L.
, and
Gao
,
M.
,
2019
, “
Novel Method for Improving the Cooling Performance of Natural Draft Wet Cooling Towers
,”
Appl. Therm. Eng.
,
147
(
10
), pp.
562
570
.
11.
Chen
,
X. H.
,
Sun
,
F. Z.
,
Chen
,
Y. L.
, and
Gao
,
M.
,
2019
, “
New Retrofit Method to Improve the Thermal Performance of Natural Draft Wet Cooling Towers Based on the Reconstruction of the Aerodynamic Field
,”
Int. J. Heat. Mass Transf.
,
132
(
12
), pp.
671
680
.
12.
Chen
,
K.
,
Sun
,
F. Z.
,
Zhang
,
L.
,
Chen
,
X. H.
, and
Zhang
,
X. Y.
,
2022
, “
A Sensitivity-Coefficients Method for Predicting Thermal Performance of Natural Draft Wet Cooling Towers Under Crosswinds
,”
Appl. Therm. Eng.
,
206
, p.
118105
.
13.
Chen
,
X. H.
,
Sun
,
F. Z.
,
Xia
,
L. J.
,
Song
,
X.
, and
Zhang
,
X. Y.
,
2023
, “
Comparative Study on the Thermal Characteristics of Natural Draft Wet Cooling Tower With Internal and External Auxiliary Fans
,”
Int. J. Heat. Mass Transf.
,
201
(
1
), p.
123648
.
14.
Zhou
,
Y.
,
Gao
,
M.
,
Long
,
G. Q.
,
Zhang
,
Z. Q.
,
Dang
,
Z. G.
,
He
,
S. Y.
, and
Sun
,
F. Z.
,
2019
, “
Experimental Study Regarding the Effects of Forced Ventilation on the Thermal Performance for Super-Large Natural Draft Wet Cooling Towers
,”
Appl. Therm. Eng.
,
155
(
3
), pp.
40
48
.
15.
Dang
,
Z. G.
,
Zhang
,
Z. Q.
,
Gao
,
M.
, and
He
,
S. Y.
,
2019
, “
Numerical Simulation of Thermal Performance for Super Large-Scale Wet Cooling Tower Equipped With an Axial Fan
,”
Int. J. Heat. Mass Transf.
,
135
(
1
), pp.
220
234
.
16.
Chen
,
X. H.
,
Sun
,
F. Z.
, and
Lyu
,
D. Q.
,
2019
, “
Field Test Study on Water Droplet Diameter Distribution in the Rain Zone of a Natural Draft Wet Cooling Tower
,”
Appl. Therm. Eng.
,
162
(
5
), p.
114252
.
17.
Feng
,
H. M.
,
Wang
,
M. Y.
,
Wang
,
N. N.
,
Xu
,
Y. D.
,
He
,
S. Y.
, and
Gao
,
M.
,
2022
, “
Influence of Environmental Parameters on the Cold-End and Thermal System of Coal-Fired Power Plant Based on Ebsilon Simulation
,”
Therm. Sci. Eng. Prog.
,
32
(
1
), p.
101340
.
18.
Zhang
,
L.
,
Zheng
,
Z.
,
Zhang
,
Q.
,
Zhang
,
L.
, and
Kang
,
L.
,
2020
, “
Study of Rotating Stall in a Centrifugal Compressor With Wide Vaneless Diffuser
,”
J. Therm. Sci.
,
29
(
3
), pp.
743
752
.
19.
Zhang
,
L.
,
He
,
R. Y.
,
Wang
,
S. L.
, and
Zhang
,
Q.
,
2020
, “
A Review of Rotating Stall in Vaneless Diffuser of Centrifugal Compressor
,”
J. Therm. Sci.
,
29
(
2
), pp.
323
342
.
20.
Zhang
,
L.
,
He
,
R. Y.
,
Wang
,
X.
,
Zhang
,
Q.
, and
Wang
,
S. L.
,
2019
, “
Study on Static and Dynamic Characteristics of an Axial Fan With Abnormal Blade Under Rotating Stall Conditions
,”
Energy
,
170
(
12
), pp.
305
325
.
You do not currently have access to this content.