Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Linear turbine cascades have been widely used to conduct fundamental and applied investigations, but only a few transient test facilities with the linear turbine cascade are available in the open literature. A novel transient test facility was presented in this paper, including detailed design and structure, and various experimental measurements (aerodynamic and thermodynamic) were conducted to verify the transient test facility’s capability. This test facility mainly includes a main air supply line (bypass line and test line), a coolant supply line, a test section, and a control system (heater and various valves). The linear cascade holds up six equally spaced cascade profiles, forming five completed cascade passages, and the center passage is used for aerodynamic and thermodynamic measurements. The aerodynamic loss and heat transfer performance were measured at various flow conditions (incidence angle, Ma, and blowing ratio (BR)). The endwall heat transfer coefficient and film cooling effectiveness were estimated by adopting a dual linear regression technique. Results indicate that the mianstream pressure and temperature present a desired step change, and remain relatively steady in the test window. The magnitudes of endwall heat transfer significantly increase as the Maex increases from 0.2 to 0.5, but the thermal load distributions remain the same. The BR is a key parameter for endwall film cooling performance, and the optimal film cooling coverage is acquired at the critical value of BR. Both insufficient and excessive coolant flowrate can result in undesirable endwall film cooling coverage, and may cause unnecessary consumption of the coolant flow.

References

1.
Han
,
J. C.
,
2013
, “
Fundamental Gas Turbine Heat Transfer
,”
ASME J. Therm. Sci. Eng. Appl.
,
5
(
2
), p.
021007
.
2.
Hussain
,
S.
,
Liu
,
J.
, and
Sundén
,
B.
,
2020
, “
Study of Effects of Axisymmetric Endwall Contouring on Film Cooling/Heat Transfer and Secondary Losses in a Cascade of First Stage Nozzle Guide Vane
,”
J. Appl. Therm. Eng.
,
168
(
3
), p.
114844
.
3.
Song
,
L.
,
Zhu
,
P.
,
Li
,
J.
, and
Feng
,
Z.
,
2017
, “
Effect of Purge Flow on Endwall Flow and Heat Transfer Characteristics of a Gas Turbine Blade
,”
J. Appl. Therm. Eng.
,
110
(
1
), pp.
504
520
.
4.
Kaur
,
I.
,
Aider
,
Y.
,
Nithyanandam
,
K.
, and
Singh
,
P.
,
2022
, “
Thermal-Hydraulic Performance of Additively Manufactured Lattices for Gas Turbine Blade Trailing Edge Cooling
,”
J. Appl. Therm. Eng.
,
211
(
7
), p.
118461
.
5.
Singh
,
P.
,
Zhang
,
M.
,
Ahmed
,
S.
,
Ramakrishnan
,
K. R.
, and
Ekkad
,
S.
,
2019
, “
Effect of Micro-Roughness Shapes on Jet Impingement Heat Transfer and Fin-Effectiveness
,”
Int. J. Heat Mass Transfer
,
132
(
4
), pp.
80
95
.
6.
Bons
,
J. P.
,
2010
, “
A Review of Surface Roughness Effects in Gas Turbines
,”
ASME J. Turbomach.
,
132
(
2
), p.
21004
.
7.
Zuccarello
,
J.
,
Saltzman
,
D.
,
Lynch
,
S.
,
Haydt
,
S.
, and
Whitfield
,
C.
,
2020
, “
A Steady Transonic Linear Cascade for True Scale Cooling Measurements
,”
Turbo Expo: Power for Land, Sea, and Air
, Vol.
84188
,
American Society of Mechanical Engineers
, p.
V07CT13A001
, ASME Paper No. GT2020-14269.
8.
Chowdhury
,
N. H.
,
Shiau
,
C. C.
,
Han
,
J. C.
,
Zhang
,
L.
, and
Moon
,
H. K.
,
2017
, “
Turbine Vane Endwall Film Cooling With Slashface Leakage and Discrete Hole Configuration
,”
ASME J. Turbomach.
,
139
(
6
), p.
061003
.
9.
Shiau
,
C. C.
,
Sahin
,
I.
,
Wang
,
N.
,
Han
,
J. C.
,
Xu
,
H.
, and
Fox
,
M.
,
2019
, “
Turbine Vane Endwall Film Cooling Comparison From Five Film-Hole Design Patterns and Three Upstream Injection Angles
,”
ASME J. Therm. Sci. Eng. Appl.
,
11
(
3
), p.
031012
.
10.
Liu
,
K.
,
Yang
,
S.
, and
Han
,
J. C.
,
2014
, “
Influence of Coolant Density on Turbine Platform Film-Cooling With Stator–Rotor Purge Flow and Compound-Angle Holes
,”
ASME J. Therm. Sci. Eng. Appl.
,
6
(
4
), p.
041007
.
11.
Gao
,
Z.
,
Narzary
,
D.
and
Han
,
J. C.
,
2008
, “
Turbine Blade Platform Film Cooling With Typical Stator-Rotor Purge Flow and Discrete-Hole Film Cooling
,”
Turbo Expo: Power for Land, Sea, and Air
, Vol.
43147
, pp.
263
274
, ASME Paper No. GT2008-50286.
12.
Chen
,
A. F.
,
Shiau
,
C. C.
and
Han
,
J. C.
,
2016
, “
Turbine Blade Platform Film Cooling With Simulated Swirl Purge Flow and Slashface Leakage Conditions
,”
ASME J. Turbomach.
,
139
(
3
), p.
031012
.
13.
Zhang
,
L.
, and
Moon
,
H. K.
,
2008
, “
The Effect of Wall Thickness on Nozzle Suction Side Film Cooling
,”
Turbo Expo: Power for Land, Sea, and Air
, Vol.
43147
, pp.
593
604
, ASME Paper No. GT2008-50631.
14.
Li
,
S. J.
,
Lee
,
J.
,
Han
,
J. C.
,
Zhang
,
L.
, and
Moon
,
H. K.
,
2016
, “
Influence of Mainstream Turbulence on Turbine Blade Platform Cooling From Simulated Swirl Purge Flow
,”
J. Appl. Therm. Eng.
,
101
, pp.
678
685
.
15.
Zhang
,
L.
,
Yin
,
J.
and
Moon
,
H. K.
,
2012
, “
The Effect of Compound Angle on Nozzle Suction Side Film Cooling
,”
Turbo Expo: Power for Land, Sea, and Air
, Vol.
44700
,
American Society of Mechanical Engineers
, pp.
1269
1278
, ASME Paper No. GT2012-68357.
16.
Zhang
,
L.
,
Yin
,
J.
,
Liu
,
K.
, and
Hee-Koo
,
M.
,
2015
, “
Effect of Hole Diameter on Nozzle Endwall Film Cooling and Associated Phantom Cooling
,”
Turbo Expo: Power for Land, Sea, and Air
, Vol.
56727
,
American Society of Mechanical Engineers
, p.
V05BT12A016
, ASME Paper No. GT2015-42541.
17.
Zhang
,
Y.
,
Yuan
,
X.
, and
Ligrani
,
P.
,
2013
, “
Film Cooling Effectiveness Distribution on First-Stage Vane Endwall With and Without Leading-Edge Fillets
,”
Int. J. Heat Mass Transfer
,
66
(
11
), pp.
642
654
.
18.
Chen
,
Z.
,
Mao
,
Y.
,
Hu
,
K.
,
Su
,
X.
, and
Yuan
,
X.
,
2021
, “
2-D Prediction Method for Multi-row Film Cooling Effectiveness
,”
J. Appl. Therm. Eng.
,
199
(
11
), p.
117607
.
19.
Zhang
,
Y.
and
Yuan
,
X.
,
2013
, “
Turbine Endwall Film Cooling With Pressure Side Radial Holes
,”
Turbo Expo: Power for Land, Sea, and Air
, Vol.
55157
,
American Society of Mechanical Engineers
, p.
V03BT13A049
, ASME Paper No. GT2013-95273.
20.
Han
,
C.
, and
Ren
,
J.
,
2012
, “
Multi-Parameter Influence on Combined-Hole Film Cooling System
,”
Int. J. Heat Mass Transfer
,
55
(
15–16
), pp.
4232
4240
.
21.
Li
,
J.
,
Ren
,
J.
and
Jiang
,
H.
,
2010
, “
Film Cooling Performance of the Embedded Holes in Trenches With Compound Angles
,”
Turbo Expo: Power for Land, Sea, and Air
, Vol.
43994
, pp.
1415
1424
, ASME Paper No. GT2010-22337.
22.
McVetta
,
A. B.
,
Giel
,
P. W.
and
Welch
,
G. E.
,
2013
, “
Aerodynamic Measurements of a Variable-Speed Power-Turbine Blade Section in a Transonic Turbine Cascade at Low Inlet Turbulence
,”
Turbo Expo: Power for Land, Sea, and Air
, Vol.
55225
,
American Society of Mechanical Engineers
, p.
V06AT36A018
, ASME Paper No. GT2013-94695.
23.
Thurman
,
D. R.
,
Poinsatte
,
P. E.
,
Giel
,
P. W.
, and
Lucci
,
B. L.
,
2018
, “
Heat Transfer Measurements on the Endwall of a Variable Speed Power Turbine Blade Cascade
,”
AHS International Annual Forum & Technology Display
, Paper No. GRC-E-DAA-TN60642.
24.
Giel
,
P. W.
,
Boyle
,
R. J.
, and
Bunker
,
R. S.
,
2004
, “
Measurements and Predictions of Heat Transfer on Rotor Blades in a Transonic Turbine Cascade
,”
ASME J. Turbomach.
,
126
(
1
), pp.
110
121
.
25.
Alqefl
,
M. H.
,
Kim
,
Y. W.
,
Moon
,
H. K.
,
Zhang
,
L.
, and
Simon
,
T. W.
,
2018
, “
Aerodynamic Measurements and Analysis in a First Stage Nozzle Guide Vane Passage With Combustor Liner Cooling, Slot Film Cooling and Endwall Contouring
,”
Turbo Expo: Power for Land, Sea, and Air
, Vol.
51005
,
American Society of Mechanical Engineers
, p.
V02BT41A022
, ASME Paper No. GT2018-76345.
26.
Alqefl
,
M. H.
,
2016
, “
An Experimental and Numerical Investigation of Endwall Aerodynamics and Heat Transfer in a Gas Turbine Nozzle Guide Vane With Slot Film Cooling
,” Master’s thesis, University of Minnesota, Twin Cities.
27.
Holgate
,
N. E.
,
Ireland
,
P. T.
, and
Romero
,
E.
,
2020
, “
Coolant Jets Blowing Across the Airfoil Stagnation Line to Enhance Film Effectiveness
,”
ASME J. Turbomach.
,
142
(
6
), p.
061005
.
28.
Saul
,
A. J.
,
Ireland
,
P. T.
,
Coull
,
J. D.
,
Wong
,
T. H.
,
Li
,
H.
, and
Romero
,
E.
,
2019
, “
An Experimental Investigation of Adiabatic Film Cooling Effectiveness and Heat Transfer Coefficient on A Transonic Squealer Tip
,”
ASME J. Turbomach.
,
141
(
9
), p.
091005
.
29.
Holgate
,
N. E.
,
Ireland
,
P. T.
, and
Romero
,
E.
,
2019
, “
The Effects of Combustor Cooling Features on Nozzle Guide Vane Film Cooling Experiments
,”
ASME J. Turbomach.
,
141
(
1
), p.
011005
.
30.
Holgate
,
N. E.
,
Ireland
,
P. T.
, and
Romero
,
E.
,
2019
, “
An Experimental-Numerical Method for Transient Infrared Measurement of Film Cooling Effectiveness and Heat Transfer Coefficient in a Single Test
,”
J. Aeronaut.
,
123
(
1270
), pp.
1982
1998
.
31.
Yakirevich
,
E.
,
Miezner
,
R.
,
Leizeronok
,
B.
, and
Cukurel
,
B.
,
2018
, “
Continuous Closed-Loop Transonic Linear Cascade for Aerothermal Performance Studies in Microturbomachinery
,”
ASME J. Eng. Gas Turbines Power
,
140
(
1
), p. 012301.
32.
Fu
,
Z.
,
Zhu
,
H.
,
Cheng
,
L.
, and
Jiang
,
R.
,
2019
, “
Experimental Investigation on the Effect of Mainstream Turbulence on Full Coverage Film Cooling Effectiveness for a Turbine Guide Vane
,”
J. Therm. Sci.
,
28
(
1
), pp.
145
157
.
33.
Kong
,
D.
,
Guo
,
T.
,
Ma
,
Z.
,
Liu
,
C.
, and
Isaev
,
S.
,
2023
, “
Investigation of Impingement Heat Transfer in Double-Wall Cooling Structures With Corrugated Impingement Plate at Small Reynolds Numbers
,”
J. Appl. Therm. Eng.
,
225
(
5
), p.
120204
.
34.
Haldeman
,
C. W.
,
Dunn
,
M. G.
,
MacArthur
,
C. D.
, and
Murawski
,
C. G.
,
1992
, “The USAF Advanced Turbine Aerothermal Research Rig (ATARR),” AGARD CP-319.
35.
Anthony
,
R. J.
,
Clark
,
J. P.
,
Finnegan
,
J. M.
, and
Johnson
,
D.
,
2012
, “
Modifications and Upgrades to the AFRL Turbine
,”
Turbo Expo: Power for Land, Sea, and Air
, Vol.
44700
,
American Society of Mechanical Engineers
, pp.
793
804
, ASME Paper No. GT2012-70084.
36.
Consigney
,
H.
, and
Richards
,
B. E.
,
1982
, “
Short Duration Measurements of Heat Transfer Rate to a Gas Turbine Rotor Blade
,”
ASME J. Eng. Power
,
104
(
3
), pp.
542
550
.
37.
Hossain
,
M. A.
,
Agricola
,
L.
,
Ameri
,
A.
,
Gregory
,
J. W.
, and
Bons
,
J. P.
,
2019
, “
Sweeping Jet Film Cooling on a Turbine Vane
,”
ASME J. Turbomach.
,
141
(
3
), p.
031007
.
38.
Hossain
,
M. A.
,
Asar
,
M. E.
,
Gregory
,
J. W.
, and
Bons
,
J. P.
,
2020
, “
Experimental Investigation of Sweeping Jet Film Cooling in a Transonic Turbine Cascade
,”
ASME J. Turbomach.
,
142
(
4
), p.
041009
.
39.
Roy
,
A.
,
Jain
,
S.
,
Ekkad
,
S. V.
,
Ng
,
W.
,
Lohaus
,
A. S.
,
Crawford
,
M. E.
, and
Abraham
,
S.
,
2017
, “
Heat Transfer Performance of a Transonic Turbine Blade Passage in the Presence of Leakage Flow Through Upstream Slot and Mateface Gap with Endwall Contouring
,”
ASME J. Turbomach.
,
139
(
12
), p.
121006
.
40.
Luehr
,
L.
,
Sibold
,
R.
,
Mao
,
S.
,
Ng
,
W. F.
,
Li
,
Z.
,
Xu
,
H.
, and
Fox
,
M.
,
2019
, “
The Effect of Step Misalignment on Purge Flow Cooling of Nozzle Guide Vane at Transonic Conditions
,”
ASME J. Turbomach.
,
142
(
10
), p.
101004
.
41.
Dunn
,
M.
, and
Mathison
,
R.
,
2013
, “
History of Short-Duration Measurement Programs Related to Gas Turbine Heat Transfer, Aerodynamics, and Aeroperformance at Calspan and OSU
,”
Turbo Expo: Power for Land, Sea, and Air
, Vol.
55164
,
American Society of Mechanical Engineers
, p.
V03CT14A013
, ASME Paper No. GT2013-94926.
42.
Anthony
,
R. J.
, and
Clark
,
J. P.
,
2013
, “
A Review of the AFRL Turbine Research Facility
,”
Turbo Expo: Power for Land, Sea, and Air
, Vol.
55164
, p.
V03CT14A010
, ASME Paper No. GT2013-94741.
43.
Teekaram
,
A. J. H.
,
Forth
,
C. J. P.
, and
Jones
,
T. V.
,
1989
, “
The Use of Foreign Gas to Simulate the Effects of Density Ratios in Film Cooling
,”
ASME J. Turbomach.
,
111
(
1
), pp.
57
62
.
44.
Bons
,
J. P.
,
Taylor
,
R. P.
,
McClain
,
S. T.
, and
Rivir
,
R. B.
,
2001
, “
The Many Faces of Turbine Surface Roughness
,”
ASME J. Turbomach.
,
123
(
4
), pp.
739
748
.
45.
Panchal
,
K. V.
,
Abraham
,
S.
,
Roy
,
A.
,
Ekkad
,
S. V.
,
Ng
,
W.
,
Lohaus
,
A. S.
, and
Crawford
,
M. E.
,
2017
, “
Effect of Endwall Contouring on a Transonic Turbine Blade Passage: Part 2: Heat Transfer Performance
,”
ASME J. Turbomach.
,
139
(
1
), p.
011009
.
46.
Smith
,
D. E.
,
Bubb
,
J. V.
,
Popp
,
O.
,
Grabowski
,
H. C.
,
Diller
,
T. E.
,
Schetz
,
J. A.
, and
Ng
,
W. F.
,
2000
, “
Investigation of Heat Transfer in a Film Cooled Transonic Turbine Cascade, Part I: Steady Heat Transfer
,”
Turbo Expo: Power for Land, Sea, and Air
, Vol.
78569
,
American Society of Mechanical Engineers
, p.
V003T01A011
, ASME Paper No. GT2000-0202.
47.
Cook
,
W. J.
, and
Felderman
,
E. J.
,
1966
, “
Reduction of Data From Thin-Film Heat-Transfer Gauges: A Concise Numerical Technique
,”
AIAA J.
,
4
(
3
), pp.
561
562
.
48.
Xue
,
S.
,
Roy
,
A.
,
Ng
,
W. F.
, and
Ekkad
,
S. V.
,
2015
, “
A Novel Transient Technique to Determine Recovery Temperature, Heat Transfer Coefficient, and Film Cooling Effectiveness Simultaneously in a Transonic Turbine Cascade
,”
ASME J. Therm. Sci. Eng. Appl.
,
7
(
1
), p.
011016
.
49.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
J. Exp. Therm. Fluid Sci.
,
1
(
1
), pp.
3
17
.
50.
Coleman
,
H. W.
,
Brown
,
K. H.
, and
Steele
,
W. G.
,
1995
, “
Estimating Uncertainty Intervals for Linear Regression
,”
33rd Aerospace Sciences Meeting and Exhibit
, p.
796
, AIAA Paper No. 95-0796.
51.
Xue
,
S.
,
2012
, “
Fan-Shaped Hole Film Cooling on Turbine Blade and Vane in a Transonic Cascade With High Freestream Turbulence
,”
Doctoral dissertations
,
Virginia Tech
,
Blacksburg, VA
.
52.
McVetta
,
A.
,
Giel
,
P.
, and
Welch
,
G.
,
2012
, “
Aerodynamic Investigation of Incidence Angle Effects in a Large Scale Transonic Turbine Cascade
,”
48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit
,
Atlanta, GA
,
July 30–Aug. 1
, p.
3879
.
53.
Abraham
,
S.
,
2011
, “
Aerodynamic Performance of High Turning Airfoils and the Effect of Endwall Contouring on Turbine Performance
,” Doctoral dissertations,
Virginia Tech
,
Blacksburg, VA
.
You do not currently have access to this content.