Graphical Abstract Figure

The proposed oscillatory PCR system, which utilizes radiation heating, aims to detect donkey-hide gelatin explicitly derived from donkey skin. Our PCR device costs under $1000 and can complete a test in just 35 minutes

Graphical Abstract Figure

The proposed oscillatory PCR system, which utilizes radiation heating, aims to detect donkey-hide gelatin explicitly derived from donkey skin. Our PCR device costs under $1000 and can complete a test in just 35 minutes

Close modal

Abstract

Polymerase chain reaction (PCR) is a biochemical technique for copying DNA by repeatedly changing the temperature of nucleic acid samples. In this study, we aim to create an oscillatory PCR system with a short reaction time, which could have significant practical implications. The device uses an electromechanical module with a servo motor and a homemade heating–cooling system that combines a halogen lamp, a Peltier element, a cooling fin, and a blower fan. We code the motor program to control the reaction chamber moving back and forth in the infrared thermal cycling system. The system uses one infrared lamp for heating and one Peltier element/thermal dissipation fins/blower fan for cooling to shorten the overall reaction time of the thermal process. Results show that using the radiant heating and convection cooling method and a micro-sample of 10 μL to perform a PCR, the total time spent is 35 min, which saves about 1 h compared to commercially available PCR instruments. The proposed PCR approach could specifically detect donkey-hide gelatin (DHG) made from donkey skin, offering a rapid and cost-effective solution. Therefore, our device has the advantages of easy manufacturing, low cost, and rapid temperature ramping rate for PCR.

References

1.
Trinh
,
K. T. L.
,
Do
,
H. D. K.
, and
Lee
,
N. Y.
,
2023
, “
Recent Advances in Molecular and Immunological Diagnostic Platform for Virus Detection: A Review
,”
Biosensors
,
13
(
4
), p.
490
.
2.
Skaltsounis
,
P.
,
Kokkoris
,
G.
,
Papaioannou
,
T. G.
, and
Tserepi
,
A.
,
2023
, “
Closed-Loop Microreactor on PCB for Ultra-Fast DNA Amplification: Design and Thermal Validation
,”
Micromachines
,
14
(
1
), p.
172
.
3.
Li
,
Z.
,
Wang
,
Y.
,
Gao
,
Z.
,
Sekine
,
S.
,
You
,
Q.
,
Zhuang
,
S.
,
Zhang
,
D.
,
Feng
,
S.
, and
Yamaguchi
,
Y.
,
2023
, “
Lower Fluidic Resistance of Double-Layer Droplet Continuous Flow PCR Microfluidic Chip for Rapid Detection of Bacteria
,”
Anal. Chim. Acta
,
1251
, p.
340995
.
4.
Verdoy
,
D.
,
Barrenetxea
,
Z.
,
Berganzo
,
J.
,
Agirregabiria
,
M.
,
Ruano-López
,
J. M.
,
Marimón
,
J. M.
, and
Olabarría
,
G.
,
2012
, “
A Novel Real Time Micro PCR Based Point-of-Care Device for Salmonella Detection in Human Clinical Samples
,”
Biosens. Bioelectron.
,
32
(
1
), pp.
259
265
.
5.
Yang
,
S.
,
Xian
,
Q.
,
Liu
,
Y.
,
Zhang
,
Z.
,
Song
,
Q.
,
Gao
,
Y.
, and
Wen
,
W.
,
2023
, “
A Silicon-Based PDMS-PEG Copolymer Microfluidic Chip for Real-Time Polymerase Chain Reaction Diagnosis
,”
J. Funct. Biomater.
,
14
(
4
), p.
208
.
6.
Chen
,
J. J.
, and
Yang
,
Y. T.
,
2011
, “
Modeling and Experiment of Shuttling Speed Effects on the OSTRYCH
,”
Appl. Therm. Eng.
,
31
(
14-15
), pp.
2797
2807
.
7.
Zhang
,
C.
,
Wang
,
H.
, and
Xing
,
D.
,
2011
, “
Multichannel Oscillatory-Flow Multiplex PCR Microfluidics for High-Throughput and Fast Detection of Foodborne Bacterial Pathogens
,”
Biomedical. Microdevices
,
13
(
5
), pp.
885
897
.
8.
Gransee
,
R.
,
Schneider
,
T.
,
Elyorgun
,
D.
,
Strobach
,
X.
,
Schunck
,
T.
,
Gatscha
,
T.
,
Höth
,
J.
,
2014
. “
Fluorescence Detection in Lab-on-a-Chip Systems Using Ultrafast Nucleic Acid Amplification Methods
,”
Proceedings of the Smart Biomedical and Physiological Sensor Technology XI 9107
,
Baltimore, MD
,
May 22
,
SPIE
, pp.
135
146
.
9.
Li
,
Z.
,
Ho
,
T. Y.
,
Chakrabarty
,
K.
,
2014
. “
Optimization of Heaters in a Digital Microfluidic Biochip for the Polymerase Chain Reaction
,”
Proceedings of the 20th International Workshop on Thermal Investigations of ICs and Systems
,
Greenwich, UK
,
Dec. 4
,
IEEE
, pp.
1
5
.
10.
Wong
,
G.
,
Wong
,
I.
,
Chan
,
K.
,
Hsieh
,
Y.
, and
Wong
,
S.
,
2015
, “
A Rapid and Low-Cost PCR Thermal Cycler for Low Resource Settings
,”
PLoS One
,
10
(
7
), p.
e0131701
.
11.
Furutani
,
S.
,
Naruishi
,
N.
,
Hagihara
,
Y.
, and
Nagai
,
H.
,
2016
, “
Development of an On-Site Rapid Real-Time Polymerase Chain Reaction System and the Characterization of Suitable DNA Polymerases for Taqman Probe Technology
,”
Anal. Bioanal. Chem.
,
408
(
20
), pp.
5641
5649
.
12.
An
,
Y. Q.
,
Huang
,
S. L.
,
Xi
,
B. C.
,
Gong
,
X. L.
,
Ji
,
J. H.
,
Hu
,
Y.
,
Ding
,
Y. J.
, et al
,
2023
, “
Ultrafast Microfluidic PCR Thermocycler for Nucleic Acid Amplification
,”
Micromachines
,
14
(
3
), p.
658
.
13.
Ke
,
C.
,
Berney
,
H.
,
Mathewson
,
A.
, and
Sheehan
,
M. M.
,
2004
, “
Rapid Amplification for the Detection of Mycobacterium Tuberculosis Using a Non-Contact Heating Method in a Silicon Microreactor Based Thermal Cycler
,”
Sens. Actuators B Chem.
,
102
(
2
), pp.
308
314
.
14.
Easley
,
C. J.
,
Legendre
,
L. A.
,
Roper
,
M. G.
,
Wavering
,
T. A.
,
Ferrance
,
J. P.
, and
Landers
,
J. P.
,
2005
, “
Extrinsic Fabry-Perot Interferometry for Noncontact Temperature Control of Nanoliter-Volume Enzymatic Reactions in Glass Microchips
,”
Anal. Chem.
,
77
(
4
), pp.
1038
1045
.
15.
Legendre
,
L. A.
,
Bienvenue
,
J. M.
,
Roper
,
M. G.
,
Ferrance
,
J. P.
, and
Landers
,
J. P.
,
2006
, “
A Simple, Valveless Microfluidic Sample Preparation Device for Extraction and Amplification of DNA From Nanoliter-Volume Samples
,”
Anal. Chem.
,
78
(
5
), pp.
1444
1451
.
16.
Easley
,
C. J.
,
Karlinsey
,
J. M.
, and
Landers
,
J. P.
,
2006
, “
ON-Chip Pressure Injection for Integration of Infrared-Mediated DNA Amplification With Electrophoretic Separation
,”
Lab Chip
,
6
(
5
), pp.
601
610
.
17.
Roper
,
M. G.
,
Easley
,
C. J.
,
Legendre
,
L. A.
,
Humphrey
,
J. A.
, and
Landers
,
J. P.
,
2007
, “
Infrared Temperature Control System for a Completely Noncontact Polymerase Chain Reaction in Microfluidic Chips
,”
Anal. Chem.
,
79
(
4
), pp.
1294
1300
.
18.
Legendre
,
L. A.
,
Morris
,
C. J.
,
Bienvenue
,
J. M.
,
Barron
,
A.
,
McClure
,
R.
, and
Landers
,
J. P.
,
2008
, “
Toward a Simplified Microfluidic Device for Ultra-Fast Genetic Analysis With Sample-in/Answer-out Capability: Application to T-Cell Lymphoma Diagnosis
,”
J. Lab. Autom.
,
13
(
6
), pp.
351
360
.
19.
Chen
,
J. J.
, and
Hsieh
,
I. H.
,
2016
, “
Using an IR Lamp to Perform DNA Amplifications on an Oscillatory Thermocycler
,”
Appl. Therm. Eng.
,
106
, pp.
1
12
.
20.
Terazono
,
H.
,
Hattori
,
A.
,
Takei
,
H.
,
Takeda
,
K.
, and
Yasuda
,
K.
,
2008
, “
Development of 1480 nm Photothermal High-Speed Real-Time Polymerase Chain Reaction System for Rapid Nucleotide Recognition
,”
Jpn. J. Appl. Phys.
,
47
(
6S
), p.
5212
.
21.
Kim
,
H.
,
Dixit
,
S.
,
Green
,
C. J.
, and
Faris
,
G. W.
,
2009
, “
Nanodroplet Real-Time PCR System With Laser Assisted Heating
,”
Opt. Express
,
17
(
1
), pp.
218
227
.
22.
Kim
,
H.
,
Vishniakou
,
S.
, and
Faris
,
G. W.
,
2009
, “
Petri Dish PCR: Laser-Heated Reactions in Nanoliter Droplet Arrays
,”
Lab Chip
,
9
(
9
), pp.
1230
1235
.
23.
Phaneuf
,
C. R.
,
Pak
,
N.
, and
Forest
,
C. R.
,
2011
, “
Modeling Radiative Heating of Liquids in Microchip Reaction Chambers
,”
Sens. Actuator A Phys.
,
167
(
2
), pp.
531
536
.
24.
Leslie
,
D. C.
,
Seker
,
E.
,
Bazydlo
,
L. A.
,
Strachan
,
B. C.
, and
Landers
,
J. P.
,
2012
, “
Platinum Nanoparticle-Facilitated Reflective Surfaces for Non-Contact Temperature Control in Microfluidic Devices for PCR Amplification
,”
Lab Chip
,
12
(
1
), pp.
127
132
.
25.
Pak
,
N.
,
Saunders
,
D. C.
,
Phaneuf
,
C. R.
, and
Forest
,
C. R.
,
2012
, “
Plug-and-Play, Infrared, Laser-Mediated PCR in a Microfluidic Chip
,”
Biomed. Microdevices
,
14
(
2
), pp.
427
433
.
26.
Saunders
,
D. C.
,
Holst
,
G. L.
,
Phaneuf
,
C. R.
,
Pak
,
N.
,
Marchese
,
M.
,
Sondej
,
N.
,
McKinnon
,
M.
, and
Forest
,
C. R.
,
2013
, “
Rapid, Quantitative, Reverse Transcription PCR in a Polymer Microfluidic Chip
,”
Biosens. Bioelectron.
,
44
, pp.
222
228
.
27.
Wang
,
Z.
,
Chen
,
R.
,
Zhu
,
X.
,
Liao
,
Q.
,
Ye
,
D.
,
Zhang
,
B.
, and
Jiao
,
L.
,
2018
, “
Thermal Analysis of the Photothermal Effect Based Droplet Microfluidic System
,”
Chem. Eng. Sci.
,
186
, pp.
191
198
.
28.
Siegrist
,
J.
,
Amasia
,
M.
,
Singh
,
N.
,
Banerjee
,
D.
, and
Madou
,
M.
,
2010
, “
Numerical Modeling and Experimental Validation of Uniform Microchamber Filling in Centrifugal Microfluidics
,”
Lab Chip
,
10
(
7
), pp.
876
886
.
29.
Chen
,
J. J.
,
Liao
,
M. H.
,
Li
,
K. T.
, and
Shen
,
C. M.
,
2015
, “
One-Heater Flow-Through Polymerase Chain Reaction Device by Heat Pipes Cooling
,”
Biomicrofluidics
,
9
(
1
), p.
014107
.
30.
Ramalingam
,
N.
,
Warkiani
,
M. E.
,
Ramalingam
,
N.
,
Keshavarzi
,
G.
,
Hao-Bing
,
L.
, and
Hai-Qing
,
T. G.
,
2016
, “
Numerical and Experimental Study of Capillary-Driven Flow of PCR Solution in Hybrid Hydrophobic Microfluidic Networks
,”
Biomed. Microdevices
,
18
(
4
), pp.
1
10
.
31.
Pardy
,
T.
,
Rang
,
T.
, and
Tulp
,
I.
,
2018
, “
Thermal Analysis of a Disposable, Instrument-Free DNA Amplification Lab-on-a-Chip Platform
,”
Sensors
,
18
(
6
), p.
1812
.
32.
Mohr
,
S.
,
Zhang
,
Y. H.
,
MacAskill
,
A.
,
Day
,
P. J. R.
,
Barber
,
R. W.
,
Goddard
,
N. J.
,
Emerson
,
D. R.
, and
Fielden
,
P. R.
,
2007
, “
Numerical and Experimental Study of a Droplet-Based PCR Chip
,”
Microfluid. Nanofluidics
,
3
(
5
), pp.
611
621
.
33.
Ohashi
,
T.
,
Kuyama
,
H.
,
Hanafusa
,
N.
, and
Togawa
,
Y.
,
2007
, “
A Simple Device Using Magnetic Transportation for Droplet-Based PCR
,”
Biomed. Microdevices
,
9
(
5
), pp.
695
702
.
34.
Nakayama
,
T.
,
Hiep
,
H. M.
,
Furui
,
S.
,
Yonezawa
,
Y.
,
Saito
,
M.
,
Takamura
,
Y.
, and
Tamiya
,
E.
,
2010
, “
An Optimal Design Method for Preventing Air Bubbles in High-Temperature Microfluidic Devices
,”
Anal. Bioanal. Chem.
,
396
(
1
), pp.
457
464
.
35.
Chen
,
J. J.
,
Shen
,
C. M.
, and
Ko
,
Y. W.
,
2013
, “
Analytical Study of a Microfluidic DNA Amplification Chip Using Water Cooling Effect
,”
Biomed. Microdevices
,
15
(
2
), pp.
261
278
.
36.
Zhu
,
Y.
,
Zhang
,
Y. X.
,
Liu
,
W. W.
,
Ma
,
Y.
,
Fang
,
Q.
, and
Yao
,
B.
,
2015
, “
Printing 2-Dimentional Droplet Array for Single-Cell Reverse Transcription Quantitative PCR Assay With a Microfluidic Robot
,”
Sci. Rep.
,
5
(
1
), p.
9551
.
37.
Schneegaß
,
I.
,
Bräutigam
,
R.
, and
Köhler
,
J. M.
,
2001
, “
Miniaturized Flow-Through PCR With Different Template Types in a Silicon Chip Thermocycler
,”
Lab Chip
,
1
(
1
), pp.
42
49
.
38.
Roche
,
P. J.
,
Beitel
,
L. K.
,
Khan
,
R.
,
Lumbroso
,
R.
,
Najih
,
M.
,
Cheung
,
M. C. K.
,
Thiemann
,
J.
, et al
,
2012
, “
Demonstration of a Plasmonic Thermocycler for the Amplification of Human Androgen Receptor DNA
,”
Analyst
,
137
(
19
), pp.
4475
4481
.
You do not currently have access to this content.