Abstract

Flat-plate micro heat pipe (FMHP) plays an important role in the field of heat dissipation of electronic devices through vapor–liquid two-phase flow. Improving the heat transfer performance of FMHP has become a hot topic. This article analyzes the heat transfer principle of the FMHP to discover that balancing the capillary pressure and permeability of the wick is crucial to the heat transfer performance of the FMHP. Therefore, we propose a kind of copper powder and three kinds of copper powder-copper mesh integrated sintered wicks, build an experimental device, and analyze and research their heat transfer performance. The results show that the wick sintered from two layers of copper mesh and copper powder can better balance the capillary pressure and permeability, and the prepared FMHP has the best heat transfer performance. The maximum thermal power is 30 W and the minimum thermal resistance is 0.27 °C/W at the optimum filling ratios.

References

1.
Wei
,
F.
,
Sun
,
X.
,
Lv
,
Z.
,
Cai
,
L.
,
Zhai
,
F.
,
Kong
,
C.
,
Shi
,
J.
, and
Zhang
,
H.
,
2025
, “
Optimized Design and Simulation Study of Liquid-Cooled Heat Sink Model for IGBT Module Based on TPMS Structure
,”
ASME. J. Thermal Sci. Eng. Appl.
,
17
(
5
), p.
051001
.
2.
Wang
,
D.
,
Deng
,
S.
,
Tao
,
Y.
,
Jiang
,
T.
,
Li
,
M.
, and
Lu
,
Y.
,
2024
, “
Cooling Heat Transfer Attributions of Supercritical CO2 in a Spiral Groove Tube Casing Heat Exchanger: A Numerical Investigation
,”
ASME. J. Thermal Sci. Eng. Appl.
,
16
(
8
), p.
081010
.
3.
Khan
,
M. M.
,
Alkhedher
,
M.
,
Ramadan
,
M.
, and
Ghazal
,
M.
,
2023
, “
Hybrid PCM-Based Thermal Management for Lithium-Ion Batteries: Trends and Challenges
,”
J. Energy. Storage
,
73
(
Part A
), p.
108775
.
4.
Ravi Shankar
,
C.
and
Naresh
,
Y.
,
2023
, “
Experimental Investigations on Effect of Orientation on Thermal Performance of a Novel Phase Change Material-Based Heat Sink
,”
ASME. J. Thermal Sci. Eng. Appl.
,
15
(
9
), p.
091010
.
5.
Li
,
C.
, and
Li
,
J.
,
2023
, “
Thermal Characteristics of a Flat Plate Pulsating Heat Pipe Module for Onsite Cooling of High Power Server CPUs
,”
Ther. Sci. Eng. Prog.
,
37
, p.
101542
.
6.
Bhatt
,
A. A.
,
Jain
,
S. V.
,
Patel
,
R. N.
, and
Vaghela
,
D. V.
,
2023
, “
Parametric Study on Axially Grooved Heat Pipe With Two Heat Sources and One Heat Sink With Multiple Branches
,”
ASME. J. Thermal Sci. Eng. Appl.
,
15
(
6
), p.
061004
.
7.
Li
,
C.
, and
Li
,
J.
,
2023
, “
A Dumbbell-Shaped 3D Flat Plate Pulsating Heat Pipe Module Augmented by Capillarity Gradient for High-Power Server CPU Onsite Cooling
,”
Energy. Convers. Manage.
,
292
, p.
117384
.
8.
Spitzenberger
,
J.
,
Hoelle
,
J.
,
Abdulheiba
,
A.
,
Mohammed
,
R. H.
,
Ismael
,
L.
,
Agonafer
,
D.
,
Wang
,
P.
,
Kowalski
,
S.
,
Nawaz
,
K.
, and
Ma
,
H.
,
2024
, “
An Experimental Investigation of Sintered Particle Effect on Heat Transfer Performance in an “Annular Flow” Evaporation Tube
,”
ASME. J. Thermal Sci. Eng. Appl.
,
16
(
7
), p.
071001
.
9.
Wang
,
G.
,
Wang
,
T.
,
Hu
,
T.
,
Yu
,
W.
, and
Yang
,
Y.
,
2022
, “
Visualization Research and Simulation Analysis on Flat Plate Heat Pipe
,”
Heat. Mass. Transfer
,
58
(
9
), pp.
1649
1665
.
10.
Li
,
H.
,
Ren
,
J.
,
Yin
,
D.
,
Lu
,
G.
,
Du
,
C.
,
Jin
,
X.
, and
Jia
,
Y.
,
2022
, “
Effects of Inclination Angle and Heat Power on Heat Transfer Behavior of Flat Heat Pipe With Bionic Grading Microchannels
,”
App. Therm. Eng.
,
206
, p.
118079
.
11.
Li
,
J.
,
Lv
,
L.
,
Zhou
,
G.
, and
Li
,
X.
,
2019
, “
Mechanism of a Microscale Flat Plate Heat Pipe With Extremely High Nominal Thermal Conductivity for Cooling High-End Smartphone Chips
,”
Energ. Conver. Manage.
,
201
, p.
112202
.
12.
Deng
,
D.
,
Liang
,
D.
,
Tang
,
Y.
,
Peng
,
J.
,
Han
,
X.
, and
Pan
,
M.
,
2013
, “
Evaluation of Capillary Performance of Sintered Porous Wicks for Loop Heat Pipe
,”
Exp. Therm. Fluid. Sci.
,
50
, pp.
1
9
.
13.
Zhou
,
W.
,
Li
,
Y.
,
Chen
,
Z.
,
Deng
,
L.
, and
Gan
,
Y.
,
2019
, “
A Novel Ultra-Thin Flattened Heat Pipe With Biporous Spiral Woven Mesh Wick for Cooling Electronic Devices
,”
Energ. Conver. Manage.
,
180
, pp.
769
783
.
14.
Kostornov
,
A.
,
Moroz
,
A.
,
Shapoval
,
A.
,
Kabov
,
O.
,
Strizhak
,
P.
, and
Legros
,
J.
,
2015
, “
Composite Structures With Gradient of Permeability to Be Used in Heat Pipes Under Microgravity
,”
Acta Astronaut.
,
115
, pp.
52
57
.
15.
Li
,
Q.
,
Lan
,
Z.
,
Chun
,
J.
,
Lian
,
S.
,
Wen
,
R.
, and
Ma
,
X.
,
2021
, “
Fabrication and Capillary Characterization of Multi-Scale Micro-Grooved Wicks With Sintered Copper Powder
,”
Int. Commun. Heat. Mass.
,
121
, p.
105123
.
16.
Xiong
,
T.
,
Li
,
R.
,
Gan
,
Y.
,
Luo
,
Q.
,
Li
,
Y.
, and
Qi
,
R.
,
2023
, “
A Study on Thermal and Hydraulic Performance of Ultra-Thin Heat Pipe With Hybrid Mesh-Groove Wick
,”
e-Prime Adv. Electrical Eng. Electron. Energy
,
3
, p.
100117
.
17.
Yang
,
K.-S.
,
Tu
,
C.-W.
,
Zhang
,
W.-H.
,
Yeh
,
C.-T.
, and
Wang
,
C.-C.
,
2017
, “
A Novel Oxidized Composite Braided Wires Wick Structure Applicable for Ultra-Thin Flattened Heat Pipes
,”
Int. Commun. Heat. Mass.
,
88
, pp.
84
90
.
18.
Li
,
Y.
,
Zhou
,
W.
,
He
,
J.
,
Yan
,
Y.
,
Li
,
B.
, and
Zeng
,
Z.
,
2016
, “
Thermal Performance of Ultra-Thin Flattened Heat Pipes With Composite Wick Structure
,”
App. Therm. Eng.
,
102
, pp.
487
499
.
19.
Lu
,
L.
,
Sun
,
J.
,
Liu
,
Q.
,
Liu
,
X.
, and
Tang
,
Y.
,
2017
, “
Influence of Electrochemical Deposition Parameters on Capillary Performance of a Rectangular Grooved Wick With a Porous Layer
,”
Int. J. Heat. Mass. Transfer
,
109
, pp.
737
745
.
20.
Huang
,
S.
,
Wan
,
Z.
,
Zhang
,
X.
,
Yang
,
X.
, and
Tang
,
Y.
,
2019
, “
Evaluation of Capillary Performance of a Stainless Steel Fiber–Powder Composite Wick for Stainless Steel Heat Pipe
,”
App. Therm. Eng.
,
148
, pp.
1224
1232
.
21.
Yi
,
F.
,
Gan
,
Y.
,
Xin
,
Z.
,
Li
,
Y.
, and
Chen
,
H.
,
2023
, “
Analysis of Thermal Characteristics of the Heat Pipes With Segmented Composite Wicks
,”
Int. J. Therm. Sci.
,
191
, p.
108341
.
22.
Shi
,
J.
,
Jia
,
X.
,
Feng
,
D.
,
Chen
,
Z.
, and
Dang
,
C.
,
2020
, “
Wettability Effect on Pool Boiling Heat Transfer Using a Multiscale Copper Foam Surface
,”
Int. J. Heat. Mass. Transfer
,
146
, p.
118726
.
23.
Ji
,
X.
,
Guo
,
H.
, and
Xu
,
J.
,
2020
, “
Research and Development of Loop Heat Pipe–a Review
,”
Front. Heat Mass Transfer
,
14
, pp.
1
16
.
24.
Li
,
J.
,
Sun
,
Y.
, and
Lu
,
N.
,
2022
, “
Research Progress and Prospect of Heat Pipe Capillary Wicks
,”
Front. Heat Mass Transfer
,
18
.
25.
Zhou
,
R.
,
Wu
,
K.
,
Li
,
H.
,
Tang
,
B.
, and
Zhou
,
G.
,
2019
, “
Experimental Study on Capillary and Mechanical Properties of a Porous Nickel–Copper Composite
,”
Mater. Sci. Tech. Lond.
,
35
(
13
), pp.
1572
1582
.
26.
Zhao
,
Z.
,
Peng
,
G.
,
Zhang
,
Y.
, and
Zhang
,
D.
,
2023
, “
Heat Transfer Performance of Flat Micro-Heat Pipe With Sintered Multi-Size Copper Powder Wick
,”
Case Stud. Therm. Eng.
,
42
, p.
102720
.
27.
Peng
,
G.
,
Zhang
,
Z.
,
Wang
,
Y.
,
Zhang
,
Y.
, and
Zhao
,
Z.
,
2023
, “
Heat Transfer of Thin Flat Heat Pipes With Gradually Varied Vapor–Liquid Channels
,”
AIP Adv.
,
13
(
1
), p.
015319
.
You do not currently have access to this content.