Abstract

A solar air heater (SAH) is a simple device that collects solar radiation and transfers it to the processed air generally used in several thermal engineering applications such as space and industrial process heating and food drying, but its utilization is only during sunny hours. Among the methods of ameliorating its employing to heat air during the off-sunshine period is through the addition of heat storage medium inside the SAH for storing the sun's radiation as thermal energy. The main objective of this experimental study is to predict the effect of the heat storage medium on the thermal performance of SAH. To achieve this goal, three different configurations of SAHs were designed and constructed in the Laboratory of Electro–Mechanic Systems, namely, traditional SAH with natural circulation (T-SAH), SAH with a centrifugal air blower (F-SAH), and SAH with a centrifugal air blower and coupled with an internal heat storage medium (FS-SAH). They were tested and compared under the same ambient conditions of Sfax, central-eastern Tunisia. Experimental results showed that the T-SAH gives higher temperatures than the F-SAH and FS-SAH during the period from 8 a.m. to 3 p.m. From 3 p.m. to 7 p.m., the temperatures of FS-SAH are the highest when compared with the other two SAHs. Through this period, the thermal energy per unit time obtained by FS-SAH, F-SAH, and T-SAH is 2.15 kW, 0.23 kW, and 0.22 kW, respectively. Due to the use of salt water as a heat storage medium, the thermal energy per unit time of FS-SAH is enhanced by 1.92 kW (corresponding to 89.3%) and 1.93 kW (corresponding to 89.77%) higher than the F-SAH and T-SAH, respectively. The FS-SAH offers higher thermal and exergy efficiency as compared to the T-SAH and F-SAH during the same period. The economic evaluation showed that the money saved by FS-SAH is 96% and 89.51% higher than the T-SAH and F-SAH, respectively. Therefore, the employ of salt water as a heat storage medium is a positive attempt to enhance the thermal performance of SAHs during the off-sunshine period of this experimental testing.

References

1.
Bhatt
,
N. S.
, and
Yadav
,
M.
,
2018
, “
Performance Analysis of Solar Air Heater With Finned Vertical Absorber
,”
Int. Res. J. Eng. Technol.
,
05
(
4
), pp.
3613
3617
.
2.
Hassan
,
M.
,
El-Sharkawy
,
I. I.
,
Amin
,
M. T.
, and
Harby
,
K.
,
2023
, “
Numerical Simulation of Cascaded Absorption-Two-Stage 4-Bed Adsorption Cooling Cycles for Efficient Low-Grade Heat Utilization
,”
Appl. Therm. Eng.
,
235
, p.
121396
.
3.
Mahanand
,
Y.
, and
Senapati
,
J. R.
,
2024
, “
Understanding Thermo-Fluidic Characteristics of a Triangular Solar Air Heater Having W-Shaped Rib-Turbulators: A 3D Computational Fluid Dynamics Study
,”
ASME J. Therm. Sci. Eng. Appl.
,
16
(
5
), p.
051004
.
4.
González-Mora
,
E.
, and
Durán-García
,
M. D.
,
2024
, “
Alternative Approach for Thermo-Hydraulic Modeling of Direct Steam Generation in Parabolic Trough Solar Collectors
,”
ASME J. Therm. Sci. Eng. Appl.
,
16
(
5
), p.
051005
.
5.
Harby
,
K.
, and
Almohammadi
,
K. M.
,
2021
, “
Study of a New Solar-Powered Combined Absorption-Adsorption Cooling System (ABADS)
,”
Arab. J. Sci. Eng.
,
46
(
3
), pp.
2929
2945
.
6.
Mohammed
,
S. A.
,
Alawee
,
W. H.
,
Chaichan
,
M. T.
,
Abdul-Zahra
,
A. S.
,
Fayad
,
M. A.
, and
Aljuwaya
,
T. M.
,
2024
, “
Optimized Solar Food Dryer With Varied Air Heater Designs
,”
Case Stud. Therm. Eng.
,
53
, p.
103961
.
7.
Thakur
,
A. K.
,
Singh
,
R.
,
Gehlot
,
A.
,
Kaviti
,
A. K.
,
Aseer
,
R.
,
Suraparaju
,
S. K.
,
Natarajan
,
S. K.
, and
Sikarwar
,
V. S.
,
2022
, “
Advancements in Solar Technologies for Sustainable Development of Agricultural Sector in India: A Comprehensive Review on Challenges and Opportunities
,”
Environ. Sci. Pollut. Res.
,
29
, pp.
43607
43634
.
8.
Qu
,
H.
,
Masud
,
M. H.
,
Islam
,
M.
,
Khan
,
M. I. H.
,
Ananno
,
A. A.
, and
Karim
,
A.
,
2022
, “
Sustainable Food Drying Technologies Based on Renewable Energy Sources
,”
Crit. Rev. Food Sci. Nutr.
,
62
(
25
), pp.
6872
6886
.
9.
Shrivastava
,
V.
,
Yadav
,
A.
, and
Shrivastava
,
N.
,
2021
, “Comparative Study of the Performance of Double-Pass and Single-Pass Solar Air Heater With Thermal Storage,”
Recent Advances in Mechanical Engineering. ICRAME 2020. Lecture Notes in Mechanical Engineering
,
A.
Kumar
,
A.
Pal
,
S. S.
Kachhwaha
, and
P. K.
Jain
, eds.,
Springer
,
Singapore
, pp.
227
237
.
10.
Anil
,
S. Y.
,
Tabish
,
A.
,
Gaurav
,
G.
,
Rajiv
,
S.
,
Naveen
,
K. G.
,
Viswanath
,
K. A.
,
Rahul
,
K.
, et al
,
2022
, “
A Numerical Investigation of an Artificially Roughened Solar Air Heater
,”
Energies
,
15
(
21
), p.
8045
.
11.
Anil
,
S. Y.
, and
Abhishek
,
S.
,
2023
, “
Experimental Investigation on Heat Transfer Enhancement of Artificially Roughened Solar Air Heater
,”
Heat Transf. Eng.
,
44
, pp.
624
637
.
12.
Karmveer
,
Kumar Gupta
,
N.
,
Siddiqui
,
M. I. H.
,
Dobrotă
,
D.
,
Alam
,
T.
,
Ali
,
M. A.
, and
Orfi
,
J.
,
2022
, “
The Effect of Roughness in Absorbing Materials on Solar Air Heater Performance
,”
Materials
,
15
(
9
), p.
3088
.
13.
Kumar
,
D.
, and
Layek
,
A.
,
2023
, “
Experimental Assessment of Thermohydraulic Performance of a Rectangular Solar Air Heater Duct Using Twisted V-Shaped Staggered Ribs
,”
ASME J. Therm. Sci. Eng. Appl.
,
15
(
4
), p.
041009
.
14.
Sebbar
,
E. H.
,
Oubenmoh
,
S.
,
Ait Msaad
,
A.
,
Hamdaoui
,
S.
,
Mahdaoui
,
M.
, and
El Rhafiki
,
T.
,
2023
, “
Optimization of Geometrical Parameters of a Solar Collector Coupled With a Thermal Energy Storage System
,”
ASME J. Therm. Sci. Eng. Appl.
,
15
(
9
), p.
091007
.
15.
Kumar
,
D.
,
Layek
,
A.
,
Kumar
,
A.
, and
Kumar
,
R.
,
2024
, “
Experimental Study for the Enhancement of Thermal Efficiency and Development of Nusselt Number Correlation for the Roughened Collector of Solar Air Heater
,”
ASME J. Therm. Sci. Eng. Appl.
,
16
(
2
), p.
021004
.
16.
Kumar
,
R.
, and
Chand
,
P.
,
2017
, “
Performance Enhancement of Solar Air Heater Using Herringbone Corrugated Fins
,”
Energy
,
127
, pp.
271
279
.
17.
Rai
,
S.
,
Chand
,
P.
, and
Sharma
,
S. P.
,
2018
, “
Evaluation of Thermos-Hydraulic Effect on Offset Finned Absorber Solar Air Heater
,”
Renew. Energy
,
125
, pp.
39
54
.
18.
Sureandhar
,
G.
,
Srinivasan
,
G.
,
Muthukumar
,
P.
, and
Senthilmurugan
,
S.
,
2022
, “
Investigation of Thermal Performance in a Solar Air Heater Having Variable Arc Ribbed Fin Configuration
,”
Sustain. Energy Technol. Assessm.
,
52
, p.
102069
.
19.
Wang
,
D.
,
Liu
,
J.
,
Liu
,
Y.
,
Wang
,
Y.
,
Li
,
B.
, and
Liu
,
J.
,
2020
, “
Evaluation of the Performance of an Improved Solar Air Heater With “S” Shaped Ribs With Gap
,”
Sol. Energy
,
195
, pp.
89
101
.
20.
Arul Kumar
,
A.
,
Ganesh Babu
,
B.
, and
Mohanraj
,
M.
,
2016
, “
Thermodynamic Performance of Forced Convection Solar Air Heaters Using Pin–Fin Absorber Plate Packed With Latent Heat Storage Materials
,”
J. Therm. Anal. Calorim.
,
126
(
3
), pp.
1657
1678
.
21.
Ganesh Kumar
,
P.
,
Balaji
,
K.
,
Sakthivadivel
,
D.
,
Vigneswaran
,
V. S.
,
Velraj
,
R.
, and
Kim
,
S. C.
,
2021
, “
Enhancement of Heat Transfer in a Combined Solar Air Heating and Water Heater System
,”
Energy
,
221
, p.
119805
.
22.
Abuska
,
M.
,
2018
, “
Energy and Exergy Analysis of Solar Air Heater Having New Design Absorber Plate With Conical Surface
,”
Appl. Therm. Eng.
,
131
, pp.
115
124
.
23.
Koraiem
,
M.
,
Handawy
,
M.
,
Driss
,
Z.
,
Khelifa
,
A.
,
Attia
,
M. E. H.
,
Abdelgaied
,
M.
, and
Harby
,
K.
,
2025
, “
Experimental Investigation of Enhanced Thermal Performance of Solar Air Collectors Through Optimized Selection of Manufacturing Materials: Energy, Exergy, Economic, and Environmental Analysis
,”
Environ. Prog. Sustain. Energy
,
44
(
1
), pp.
1
11
.
24.
Fattoum
,
R.
,
Hidouri
,
A.
,
El Hadi Attia
,
M.
,
Arıcı
,
M.
, and
Ammar Abbassi
,
M.
,
2024
, “
Optimization of Solar Air Heaters Performance Using Parallel Porous Wire Mesh: Energy, Exergy, and Enviro-Economic Analyses
,”
Therm. Sci. Eng. Prog.
,
48
, p.
102385
.
25.
Vijayan
,
S.
,
Arjunan
,
T. V.
,
Kumar
,
A.
, and
Matheswaran
,
M. M.
,
2020
, “
Experimental and Thermal Performance Investigations on Sensible Storage Based Solar Air Heater
,”
J. Energy Storage
,
31
, p.
101620
.
26.
Alok
,
P.
,
Javvadi
,
S. C. T.
,
Konchada
,
P. K.
, and
Dheep
,
G. R.
,
2021
, “
Numerical Simulation of a Single-Pass Parallel Flow Solar Air Heater With Circular Fins Using S2S Radiation Model
,”
Lect. Notes Mech. Eng.
,
29
, pp.
101
111
.
27.
Yadav
,
K. D.
, and
Prasad
,
R. K.
,
2020
, “
Performance Analysis of Parallel Flow Flat Plate Solar Air Heater Having Arc Shaped Wire Roughened Absorber Plate
,”
Renew. Energy Focus
,
32
, pp.
23
44
.
28.
Maadi
,
S. R.
,
Kolahan
,
A.
,
Passandideh-Fard
,
M.
,
Sardarabadi
,
M.
, and
Moloudi
,
R.
,
2017
, “
Characterization of PVT Systems Equipped With Nanofluids-Based Collector From Entropy Generation
,”
Energy Convers. Manage.
,
150
, pp.
515
531
.
29.
Abi Mathew
,
A.
, and
Thangavel
,
V.
,
2021
, “
A Novel Thermal Storage Integrated Evacuated Tube Heat Pipe Solar Air Heater: Energy, Exergy, Economic and Environmental Impact Analysis
,”
Sol. Energy
,
220
, pp.
828
842
.
You do not currently have access to this content.