In this paper, the direction of crack growth under fretting fatigue loading is studied through an experimental and theoretical approach. The experimental work enabled the fretting conditions to be known and the site of initiation and crack trajectory to be viewed; theoretical work permitted a prediction of those processes. Fretting wear and fretting fatigue loadings induce non-proportional mixed mode loading at the tip of the cracks initiated within the contact zone. The classical criteria predicting the direction of crack growth cannot account for the non-proportional loading. Tests were carried out to study the cracking phenomena under cumulative effects of contact and external loadings, i.e., fretting fatigue loading. The fretting contact between the two contacting bodies is modeled to evaluate the operating contact loading conditions. The response of the cracked body is determined in terms of stress intensity factors using the continuous distribution of dislocations theory coupled with a unilateral contact analysis with friction. The angle of crack extension is then predicted, at different stages of crack life, according to a new approach. The correlation of the predicted angle of crack extension with the experimental observation enables the conclusion that, under fretting fatigue loading, cracks propagate by a mode I process.

1.
Berthier, Y., Colombie´, C., Lofficial, G., Vincent, L., and Godet, M., 1986, “First and Third Body Effects in Fretting. A Source and Sink Problems,” 12th Leeds-Lyon Symposium: Global studies of mechanisms and local analysis of surface distress phenomena, D. Dowson, C. M. Taylor, M. Godet, D. Berthe, eds., pp. 81–90.
2.
Bold
P. E.
,
Brown
M. W.
, and
Allen
R. J.
,
1992
, “
A Review of Fatigue Crack Growth in Steels Under Mixed Mode I and II Loading
,”
Fatigue Fract. Engng. Mater. Struct.
, Vol.
15
, No.
10
, pp.
965
977
.
3.
Bower
A. F.
,
1988
, “
The Influence of Crack Face Friction and Trapped Fluid on Surface Initiated Rolling Contact Fatigue Cracks
,”
ASME JOURNAL OF TRIBOLOGY
, Vol.
110
, pp.
704
711
.
4.
Brown
M. W.
, and
Miller
K. J.
,
1973
, “
A Theory for Fatigue Failure Under Multiaxial Stress-Strain Conditions
,”
Proc. Inst. Mech. Engrs.
, Vol.
187
, pp.
745
755
.
5.
Comninou
M.
,
1977
, “
The Interface Crack in a Shear Field
,”
ASME Journal of Applied Mechanics
, Vol.
45
, pp.
287
290
.
6.
Dubourg
M. C.
,
Mouwakeh
M.
, and
Villechaise
B.
,
1988
, “
Interaction Fissure-Contact—Etude Theorique et Expe´rimentale
,”
J. of Theoretical and Applied Mechanics
, Vol.
7
, No.
5
, pp.
623
643
.
7.
Dubourg
M. C.
, and
Villechaise
B.
,
1989
, “
Unilateral Contact Analysis of a Crack with Friction
,”
European J. Mech., A/Solids
, Vol.
8
, No.
4
, pp.
309
319
.
8.
Dubourg, M. C., 1989, “Le Contact Unilate´ral avec Frottement le Long de Fissures de Fatigue dans les Liaisons Me´icaniques,” The´se: Doctorat, Institut National des Sciences Applique´es de Lyon, 253 p.
9.
Dubourg
M. C.
, and
Ville´chaise
B.
,
1992
a, “
Analysis of Multiple Fatigue Cracks—Part I; Theory
,”
ASME, JOURNAL OF TRIBOLOGY
, Vol.
114
, pp.
455
461
.
10.
Dubourg
M. C.
,
Godet
M.
, and
Villechaise
B.
,
1992
b, “
Analysis of Multiple Fatigue Cracks—Part II: Results
,”
ASME JOURNAL OF TRIBOLOGY
, Vol.
114
, pp.
462
468
.
11.
Dubourg
M. C.
, and
Villechaise
B.
,
1992
c, “
Stress Intensity Factors in a Bent Crack: A Model
,”
Eur. J. Mech., A/Solids
, Vol.
11
, No.
2
, pp.
169
179
.
12.
Dubourg, M. C., and Lamacq, V., 1994, “A Theoretical Model for the Prediction of Crack Field Evolution,” Fretting Fatigue, ESIS 18, R. B. Waterhouse and T. C. Lindley, eds., Mechanical Engineering Publications, London, pp. 135–147.
13.
Dundurs
J.
, and
Mura
T.
,
1964
, “
Interaction Between an Edge Dislocation and a Circular Inclusion
,”
J. Mech. Phys. Solids.
, Vol.
12
, pp.
177
189
.
14.
Erdogan
F.
, and
Sih
G. C.
,
1963
, “
On the Crack Extension in Plates Under Plane Loading and Transverse Shear
,”
ASME Journal of Basic Engineering
, Vol.
85
, pp.
519
525
.
15.
Fatemi
A.
, and
Socie
D. F.
,
1988
, “
A Critical Plane Approach to Multiaxial Fatigue Damage Including Out-of-Phase Loading
,”
Fatigue Fract. Engng. Mater. Struct.
, Vol.
11
, No.
3
, pp.
149
165
.
16.
Forsyth, P. J. E., 1963, “Fatigue Damage and Crack Growth in Aluminium Alloys,” Acta Mettalurgica, II, 703.
17.
Forsyth, P. J. E., 1981, “Occurrence of Fretting Fatigue Failures in Practice,” in R. B. Waterhouse, ed., Fretting Fatigue, Elsevier Applied Science, London, pp. 99–125.
18.
Godet
M.
,
1984
, “
The Third Body Approach. A Mechanical View of Wear
,”
Wear
, Vol.
100
, pp.
437
452
.
19.
Godet, M., 1988, “Modeling of Friction and Wear Phenomena,” F. F. Ling and C. H. T. Pan eds., Approaches to modeling of friction and wear, Springer-Verlag, pp. 12–36.
20.
Hills
D. A.
, and
Comninou
M.
,
1985
, “
An Analysis of Fretting-Fatigue Cracks During Loading Phase
,”
Int. J. of Solids Structures
, Vol.
21
, No.
7
, pp.
721
730
.
21.
Hoeppner, D. W., 1974, “Fretting of Aircraft Control Surfaces,” AGARD Conf. Proc., No. 161, AGARD, Munich.
22.
Hourlier, F., d’Hondt, H., Truchon, M., and Pineau, A., 1982, “Fatigue Crack Path Behaviour Under Polymodal Fatigue,” Rapport IRSID R E 958.
23.
Hua
C. T.
, and
Socie
D. F.
,
1984
, “
Fatigue Damage in 1045 Steel Under Constant Amplitude Biaxial Loading
,”
Fatigue Engng. Mater. Struct.
, Vol.
2
, pp.
165
179
.
24.
Johnson, K. L., 1985, Contact Mechanics, Cambridge University Press, 451 pp.
25.
Kalker, J. J., 1990, Three Dimensionnal Elastic Bodies in Rolling Contact, Kluwer Academic Publishers, 314 pp.
26.
Kanazawa
K.
,
Miller
K. J.
, and
Brown
M. W.
,
1977
, “
Low-Cycle Fatigue Under Out-of-Phase Loading Conditions
,”
J. Engng. Mater. Tech.
, Vol.
99
, pp.
222
228
.
27.
Kaneta
M.
,
Yatsuzuka
H.
, and
Murakami
Y.
,
1985
, “
Mechanism of Crack Growth in Lubricated Rolling/Sliding Contact
,”
ASLE Transaction
, Vol.
28
, No.
3
, pp.
407
414
.
28.
Keer, L. M., Bryant, M. D., and Haritos, G. K., 1980, “Subsurface Cracking and Delamination, in Solid. Contact and Lubrication,” Ed. by H. S. Cheng and L. M. Keer, eds., ASME AMD, Vol. 39, pp. 78–85.
29.
Keer
L. M.
,
Bryant
M. D.
, and
Hiratos
G. K.
,
1982
, “
Subsurface and Surface Cracking Due to Hertzian Contact
,”
ASME, JOURNAL OF LUBRICATION TECHNOLOGY
, Vol.
104
, pp.
347
351
.
30.
Keer
L. M.
, and
Bryant
M. D.
,
1983
, “
A Pitting Model for Rolling Contact Fatigue
,”
ASME JOURNAL OF LUBRICATION TECHNOLOGY
, Vol.
105
, pp.
198
205
.
31.
Lawn
B. R.
,
1967
, “
Partial Cone Crack Formation in Brittle Material with a Sliding Spherical Indenter
,”
Proc. R. Soc.
, A
299
, pp.
307
317
.
32.
O’Connor, J. J., 1981, “The Role of Elastic Stress Analysis in the Interpretation of Fretting Fatigue Failures,” R. B. Waterhouse, ed., Fretting Fatigue, Elsevier Applied Science, London, pp. 23–66.
33.
Paris
P. C.
,
1964
, “
The Propagation of Cracks and Energy of Elastic Deformation
,”
ASME Journal of Applied Mechanics
, Vol.
80
, pp.
1225
1230
.
34.
Pellerin, V., 1990, “Etude du Comportement en Usure Induite Sous Petits De´battements d’Alliages d’Aluminium et de Titane,” Thesis, Ecole Centrale de Lyon, Lyon.
35.
Reybet-Degat, P., and Vincent, L., 1994, “Cracking of Aluminium Alloys Under Fretting,” NordTrib’94, Vol. 1, pp. 121–128.
36.
Sheppard
S. D.
,
Hills
D. A.
, and
Barber
J. R.
,
1986
, “
An Analysis of Fretting Cracks. Part 2: Unloading and Reloading Phases
,”
Int. J. of Solids Structures
, Vol.
23
, pp.
140
152
.
37.
Sheppard
S. D.
,
Barber
J. R.
, and
Comninou
M.
,
1987
, “
Subsurface Cracks Under Conditions of Slip, Stick and Separation Caused by a Moving Compressive Load
,”
ASME J. Appl. Mech.
, Vol.
54
, pp.
393
398
.
38.
Short
J. S.
, and
Hoeppner
D. W.
,
1989
, “
The Maximal Dissipation Rate Criterion-I. Hypothesis and Theoretical Considerations
,”
Engng. Fract. Mech.
, Vol.
33
, No.
2
, pp.
165
173
.
39.
Sih
G. C.
,
1974
, “
Strain-Energy-Density Factor Applied to Mixed Mode Crack Problems
,”
Int. J. Fract.
, Vol.
10
, No.
3
, pp.
305
321
.
40.
Sih, G. C., 1991, Mechanics of Fracture Initiation and Propagation, Kluwer Academic Publishers.
41.
Sin
H. C.
, and
Suh
N. P.
,
1984
, “
Subsurface Crack Propagation Due to Surface Traction in Sliding Wear
,”
ASME Journal of Applied Mechanics
, Vol.
51
, pp.
317
323
.
42.
Smith
E. W.
, and
Pascoe
K. J.
,
1983
, “
The Behaviour of Fatigue Cracks Subject to Applied Biaxial Stress: A Review of Experimental Evidence
,”
Fatigue Engng. Mater. Struct.
, Vol.
6
, No.
3
, pp.
201
224
.
43.
Socie
D. F.
,
1987
, “
Multiaxial Fatigue Damage Models
,”
J. Engng. Mater. Tech.
, Vol.
109
, pp.
293
298
.
44.
Theocaris
P. S.
, and
Andrianopoulos
N. P.
,
1982
, “
The Mises Elastic-Plastic Boundary as the Core Region in Fracture Criteria
,”
Engng. Fract. Mech.
, Vol.
16
, No.
3
, pp.
425
432
.
45.
Tirosh
J.
,
1977
, “
Incipient Fracture Angle, Fracture Loci and Critical Stress for Mixed Mode Loading
,”
Engng. Fract. Mech.
, Vol.
9
, pp.
607
616
.
46.
Truchon, M., and Amestoy, M., 1981, “Etude The´orique et Expe´rimentale de la Fissuration par Fatigue Sous Sollicitations Biaxiales,” Rapport IRSID R E 872.
47.
Vincent, L., Berthier, Y., and Godet, M., 1987, “Fretting Wear and Fretting Fatigue Damage,” Fatigue 87, Vol. 1, pp. 567–575.
48.
Vincent
L.
,
Berthier
Y.
, and
Godet
M.
,
1992
a, “
Testing Method in Fretting-Fatigue: A Critical Appraisal
,”
ASTM
, Vol.
1159
, pp.
33
48
.
49.
Vincent
L.
,
Berthier
Y.
,
Dubourg
M. C.
, and
Godet
M.
,
1992
b, “
Mechanics and Materials in Fretting
,”
Wear
, Vol.
153
, pp.
135
148
.
50.
Vincent, L., Godet, M., and Berthier, Y., 1994, Rapport final, Central “Programme Fretting—Fatigue,” No. 9196030004717586, 178 pp.
51.
Vingsbo
O.
, and
Soderberg
D.
,
1988
, “
On Fretting Maps
,”
Wear
, Vol.
126
, pp.
131
147
.
52.
Vingsbo, O., Odfalk, M., and Shen, N. E., 1989, “Fretting Maps and Fretting Behavior of Some FCC Metal Alloys,” Wear Mater., pp. 275–282.
53.
Waterhouse, R. B., 1972, Fretting Corrosion, Pergamon, Oxford.
54.
Waterhouse, R. B., 1981, Fretting Fatigue, Elsevier Applied Science, London.
55.
Xiaogang
L.
,
Qing
C.
, and
Eryu
S.
,
1988
, “
Initiation and Propagation of Case Crushing Cracks in Rolling Contact Fatigue
,”
Wear
, Vol.
122
, pp.
33
43
.
56.
Zhou, R. Z., 1992, “Fissuration Induite en Petits De´battements: Application au cas d’Alliages d’Aluminium Ae´ronautiques,” The´se de Doctorat, Ecole Centrale de Lyon, pp. 161.
57.
Zhou
Z. R.
, and
Vincent
L.
,
1993
, “
Effect of External Loading on Maps of Aluminium Alloys
,”
Wear
, Vol.
162–164
, pp.
619
623
.
This content is only available via PDF.
You do not currently have access to this content.