The apparent contact area of curved rough surfaces can be larger than that predicted by the Hertz theory due to asperity interaction outside the Hertzian region. In the present study, simple theoretical formulas for the contact semi-width and radius for Gaussian and truncated Gaussian height distributions were derived, and a numerical contact model was developed based on a general power-law relationship between the local apparent pressure and real-to-apparent contact ratio. Numerical results of the contact semi-width agree well with the prediction of the formula. The apparent contact region becomes increasingly larger than the Hertzian region as a dimensionless roughness parameter increases or as a dimensionless load parameter decreases. The ratio of the contact semi-width to the Hertzian semi-width and the apparent pressure distribution are completely determined by a dimensionless contact parameter and the dimensionless roughness parameter, which are both independent of the instrument resolution, thus providing a long awaited solution to the problem of instrument dependency in a traditional theory. An application to fractal-regular surfaces indicates that the influence of the fractal dimension on the contact behavior is due to its effects on both the area-load coefficient and the load exponent.

1.
Johnson
,
K. L.
, 1985,
Contact Mechanics
,
Cambridge University Press
, Cambridge, England, pp.
90
95
,
416
422
, and
427
428
.
2.
Wang
,
S.
, and
Komvopoulos
,
K.
, 2000, “
Static Friction and Initiation of Slip at Magnetic Head-Disk Interfaces
,”
ASME J. Tribol.
0742-4787,
122
(
1
), pp.
246
256
.
3.
Wang
,
S.
,
Crimi
,
F. P.
, and
Blanco
,
R. J.
, 2003, “
Dynamic Behavior of Magnetic Head Sliders and Carbon Wear in a Rampload Process
,”
Microsyst. Technol.
0946-7076,
9
, pp.
266
270
.
4.
Greenwood
,
J. A.
, and
Tripp
,
J. H.
, 1967, “
The Elastic Contact of Rough Spheres
,”
ASME J. Appl. Mech.
0021-8936,
34
, pp.
153
159
.
5.
Greenwood
,
J. A.
, and
Williamson
,
J. B. P.
, 1966, “
Contact of Nominally Flat Surfaces
,”
Proc. R. Soc. London, Ser. A
1364-5021,
295
, pp.
300
319
.
6.
Greenwood
,
J. A.
, 1992, “
Problems With Surface Roughness
,”
Fundamentals of Friction: Macroscopic and Microscopic Processes
,
Singer
,
I. L.
, and
Pollock
,
H. M.
, eds.,
Kluwer
, Dordrecht, pp.
57
76
.
7.
Majumdar
,
A.
, and
Bhushan
,
B.
, 1991, “
Fractal Model of Elastic-Plastic Contact Between Rough Surfaces
,”
ASME J. Tribol.
0742-4787,
113
(
1
), pp.
1
11
.
8.
Wang
,
S.
, and
Komvopoulos
,
K.
, 1994, “
A Fractal Theory of the Interfacial Temperature Distribution in the Slow Sliding Regime—Part I: Elastic Contact and Heat Transfer Analysis
,”
ASME J. Tribol.
0742-4787,
116
(
4
), pp.
812
823
.
9.
Wang
,
S.
, and
Komvopoulos
,
K.
, 1994, “
A Fractal Theory of the Interfacial Temperature Distribution in the Slow Sliding Regime—Part II: Multiple Domains, Elastoplastic Contacts and Applications
,”
ASME J. Tribol.
0742-4787,
116
(
4
), pp.
824
832
.
10.
Wang
,
S.
, 2004, “
Real Contact Area of Fractal-Regular Surfaces and Its Implications in the Law of Friction
,”
ASME J. Tribol.
0742-4787,
126
(
1
), pp.
1
8
.
11.
Bahrami
,
M.
,
Yovanovich
,
M. M.
, and
Culham
,
J. R.
, 2005, “
A Compact Model for Spherical Rough Contacts
,”
ASME J. Tribol.
0742-4787,
127
(
4
), pp.
884
889
.
12.
Wang
,
S.
, and
Komvopoulos
,
K.
, 1995, “
A Fractal Theory of the Temperature Distribution at Elastic Contacts of Fast Sliding Surfaces
,”
ASME J. Tribol.
0742-4787,
117
(
2
), pp.
203
215
.
13.
Wang
,
S.
, and
Chan
,
W. K.
, 2005, “
Experimental Observation of Fractal-Regular Surfaces and a Transformation Scheme for Extracting Fractal Parameters
,”
Proc. of World Tribol. Congress III
, Sept. 12–16, Washington, DC,
ASME
, New York, ASME/STLE/ITC Paper No. WTC2005-63585.
14.
Wang
,
S.
,
Shen
,
J.
, and
Chan
,
W. K.
, 2007, “
Determination of the Fractal Scaling Parameter From Simulated Fractal-Regular Surface Profiles Based on the Weierstrass-Mandelbrot Function
,”
Trans. ASME, J. Tribol.
0742-4787
129
(
4
) (in press).
15.
Cameron
,
A.
, 1981,
Basic Lubrication Theory
, 3rd ed.,
Wiley
, New York, pp.
179
188
.
16.
Williams
,
J. A.
, 1994,
Engineering Tribology
,
Oxford University Press
, London, pp.
88
93
.
17.
Aramaki
,
H.
,
Cheng
,
H. S.
, and
Chung
,
Y.-W.
, 1993, “
The Contact Between Rough Surfaces With Longitudinal Texture—Part I: Average Contact Pressure and Real Contact Area
,”
ASME J. Tribol.
0742-4787,
115
, pp.
419
424
.
18.
Greenwood
,
J. A.
, 1999, “
What Is an Asperity?
Tribology of Information Storage Devices
,
TISD’99, Abstract Book, Santa Clara, CA, Dec. 6–8, Institute of Physics, Berkshire, p.
20
.
19.
Aleksandrov
,
V. M.
, and
Kudish
,
I. I.
, 1979, “
Asymptotic Analysis of Plane and Axisymmetric Contact Problems With Allowance for Surface Structure of Interacting Bodies
,”
Izv. Akad. Nauk SSSR. Mekh. Tverdogo Tela
,
14
(
1
), pp.
58
70
.
20.
Morag
,
Y.
, and
Etsion
,
I.
, 2007, “
Resolving the Contradiction of Asperities Plastic to Elastic Mode Transition in Current Contact Models of Fractal Rough Surfaces
,”
Wear
0043-1648,
262
, pp.
624
629
.
21.
Persson
,
B. N. J.
,
Bucher
,
F.
, and
Chiaia
,
B.
, 2002, “
Elastic Contact Between Randomly Rough Surfaces: Comparison of Theory With Numerical Results
,”
Phys. Rev. B
0163-1829,
65
, pp.
184106
/1–7.
22.
Ciavarella
,
M.
,
Demelio
,
G.
,
Barber
,
J. R.
, and
Jang
,
Y. H.
, 2000, “
Linear Elastic Contact of the Weierstrass Profile
,”
Proc. R. Soc. London, Ser. A
1364-5021,
456
, pp.
387
405
.
You do not currently have access to this content.