The determination of the elastoplastic deformation regime arising at the microcontact of a deformable ellipsoid and a rigid smooth flat was the main purpose of this study. One-eighth of an ellipsoid and a flat plate were taken as the contact bodies in the finite element analysis, and a mesh scheme of multisize elements was applied. Two observed phenomena regarding the contact pressures and the equivalent von Mises stresses formed at the contact area are given in order to identify the inception of the fully plastic deformation regime of an ellipsoid with an ellipticity ke. If the ellipticity (k) of an elliptical contact area is defined as the length ratio of the minor axis to the major axis, it is asymptotic to the ke value when the interference is sufficiently increased, irrespective of the ke value. The dimensionless interference regime associated with the elastoplastic deformation regime is narrowed by increasing the ellipticity of the ellipsoid (ke). Significant differences in the microcontact parameters such as the contact pressure, the contact area, and the contact load were found to be a function of the interference and the ke parameter of an ellipsoid. The interferences corresponding to the inceptions of the elastoplastic and fully plastic deformation regimes are both increased if the ke value is lowered. The interference, the contact area, and the contact load predicted by the present model for the behavior demonstrated at the inception of the elastoplastic deformation regime are lower than those obtained from the Horng model (Horng, J. H., 1998, “An Elliptical Elastic-Plastic Asperity Microcontact Model for Rough Surfaces,” ASME J. Tribol., 120, pp. 82–88) and the Jeng-Wang model (Jeng, Y. R., and Wang, P. Y., 2003, “An Elliptical Microcontact Model Considering Elastic, Elastoplastic, and Plastic Deformation,” ASME J. Tribol., 125, pp. 232–240). Big differences in the results of the average contact pressure, the contact area, and the contact load among the above microcontact models are discussed. The discrepancies are also explained from the developments of these models and boundary conditions set for the elastoplastic deformation regime.

1.
Timoshenko
,
S.
, and
Goodier
,
J. N.
, 1951,
Theory of Elasticity
,
McGraw-Hill
,
New York
.
2.
Greenwood
,
J. A.
, and
Williamson
,
J. B. P.
, 1966, “
Flat Surface
,”
Proc. R. Soc. London, Ser. A
1364-5021,
295
, pp.
300
319
.
3.
Pullen
,
J.
, and
Williamson
,
J. B. P.
, 1972, “
On the Plastic Contact of Rough Surfaces
,”
Proc. R. Soc. London, Ser. A
1364-5021,
327
, pp.
159
173
.
4.
Chang
,
W. R.
,
Etsion
,
I.
, and
Bogy
,
D. B.
, 1987, “
An Elastic-Plastic Model for the Contact of Rough Surfaces
,”
ASME J. Tribol.
0742-4787,
109
, pp.
257
263
.
5.
Tabor
,
D.
, 1951,
The Hardness of Metals
,
Oxford University Press
,
New York
.
6.
Chang
,
W. R.
, 1986, “
Contact, Adhesion and Static Friction of Metallic Rough Surfaces
,” Ph.D. thesis, University of California, Berkeley.
7.
Jackson
,
R. L.
, and
Green
,
I.
, 2005, “
A Finite Element Study of Elasto-Plastic Hemispherical Contact Against a Rigid Flat
,”
ASME J. Tribol.
0742-4787,
127
, pp.
343
354
.
8.
Green
,
I.
, 2005, “
Poisson’s Ratio Effects and Critical Values in Spherical and Cylindrical Hertzian Contacts
,” Int. J.
Appl. Mech. Eng.
1425-1655,
10
, pp.
451
462
.
9.
Zhao
,
Y.
,
Maietta
,
D. M.
, and
Chang
,
L.
, 2000, “
An Asperity Microcontact Model Incorporating the Transition From Elastic Deformation to Fully Plastic Flow
,”
ASME J. Tribol.
0742-4787,
122
, pp.
86
93
.
10.
Kragel’skii
,
I. V.
, and
Mikhin
,
N. M.
, 1988,
Handbook of Friction Units of Machines
,
ASME
,
New York
.
11.
Bush
,
A. W.
,
Gibson
,
R. D.
, and
Keogh
,
G. D.
, 1979, “
Strong Anisotropic Rough Surface
,”
ASME J. Lubr. Technol.
0022-2305,
101
, pp.
15
20
.
12.
Horng
,
J. H.
, 1998, “
An Elliptical Elastic-Plastic Asperity Microcontact Model for Rough Surfaces
,”
ASME J. Tribol.
0742-4787,
120
, pp.
82
88
.
13.
Jeng
,
Y. R.
, and
Wang
,
P. Y.
, 2003, “
An Elliptical Microcontact Model Considering Elastic, Elastoplastic, and Plastic Deformation
,”
ASME J. Tribol.
0742-4787,
125
, pp.
232
240
.
14.
Johnson
,
K. L.
, 1985,
Contact Mechanics
,
Cambridge University Press
,
Cambridge
.
15.
Sackfield
,
A.
, and
Hills
,
D. A.
, 1983, “
Some Useful Results in the Classical Hertz Contact Problem
,”
J. Strain Anal. Eng. Des.
0309-3247,
18
, pp.
101
105
.
16.
Thomas
,
H. R.
, and
Hoersch
,
V. A.
, 1930, “
Stress Due to the Pressure of One Elastic Solid Upon Another
,”
University of Illinois
, Engineering Experimental Station, Bulletin No. 212.
17.
Belajev
,
N. M.
, 1917,
Bulletin of Institution of Ways and Communications
, St. Petersburg.
18.
Lungberg
,
G.
, and
Sjövall
,
H.
, 1958, “
Stress and Deformation in Elastic Solids
,” Pub. No. 4, Inst. Th. Of Elast.,
Chalmers University of Technology
, Goteborg, Sweden.
19.
Kogut
,
L.
, and
Etsion
,
I.
, 2002, “
Elastic-Plastic Contact Analysis of a Sphere and a Rigid Flat
,”
ASME J. Appl. Mech.
0021-8936,
69
, pp.
657
662
.
20.
Lin
,
L. P.
, and
Lin
,
J. F.
, 2005, “
An Elastoplastic Microasperity Contact Model for Metallic Materials
,”
ASME J. Tribol.
0742-4787,
127
, pp.
666
672
.
21.
Lin
,
L. P.
, and
Lin
,
J. F.
, 2006, “
A New Method for Elastic-Plastic Contact Analysis of a Deformable Sphere and a Flat
,”
ASME J. Tribol.
0742-4787,
128
, pp.
221
229
.
22.
Francis
,
H. A.
, 1976, “
Phenomenological Analysis of Plastic Spherical Indentation
,”
ASME J. Eng. Mater. Technol.
0094-4289,
98
, pp.
272
281
.
23.
Jeng
,
Y. R.
, and
Peng
,
S. R.
, 2006, “
Elastic-Plastic Contact Behavior Considering Asperity Interactions for Surface With Various Height Distribution
,”
ASME J. Tribol.
0742-4787,
128
, pp.
245
251
.
You do not currently have access to this content.