A numerical analysis is conducted to investigate the elastohydrodynamic effect of deterministic microasperities on the shaft of a lip seal. Various geometries of microasperities (triangular, square, hexagonal, and circular) are put into a 100×100μm2 unit cell and are investigated using Reynolds equation. For each shape, the area fraction of the microasperity is varied between 0.2 and 0.8, and the asperity height is varied between 0.3μm and 5μm. The calculation for load capacity and friction coefficient indicates that there are values for asperity height, where the load capacity and friction coefficient are optimized. These optimum heights were reached at 13μm. Although the lip seal surface is considered to be smooth, reverse pumping can still be obtained using an oriented triangular design. The Couette flow rate for this asperity showed lubricant is reverted back toward the seal side 2.6 times more than using a conventional lip seal. The addition of microasperities to the shaft surface shows significant improvement in lubrication characteristics for the lip seal in the form of a simultaneous reduction in friction coefficient and increase in the reverse pumping rate.

1.
Kawahara
,
Y.
,
Abe
,
M.
, and
Hirabayashi
,
H.
, 1980, “
An Analysis of Sealing Characteristics of Oil Seals
,”
ASLE Trans.
0569-8197,
23
, pp.
93
102
.
2.
Rivkin
,
M.
, and
Kholodenko
,
A.
, 1994, “
Mechanical Seal With Elastomeric Rotating Element Part 2: Experimental Study
,”
Rubber Chem. Technol.
0035-9475,
67
(
1
), pp.
62
75
.
3.
Tonder
,
K.
, and
Salant
,
R.
, 1992, “
Non-Leaking Lip Seals: A Roughness Effect Study
,”
ASME J. Tribol.
0742-4787,
114
, pp.
595
599
.
4.
Chang.
,
L.
, 1995, “
A Deterministic Model for Line-Contact Partial Elastohydrodynamic Lubrication
,”
Tribol. Int.
0301-679X,
28
(
2
), pp.
75
84
.
5.
Kholodenko
,
A.
, and
Rivkin
,
M.
, 1994, “
Mechanical Seal With Elastomeric Rotating Element Part 1: Theory of Operation
,”
Rubber Chem. Technol.
0035-9475,
67
(
1
), pp.
42
61
.
6.
Salant
,
R. F.
, and
Flaherty
,
A. L.
, 1995, “
Elastohydrodyamics of Lip Seals
,”
Lubr. Sci.
0954-0075,
8
(
1
), pp.
15
26
.
7.
Salant
,
R. F.
, 1996, “
Elastohydrodynamic Model of the Rotary Lip Seal
,”
ASME J. Tribol.
0742-4787,
118
, pp.
291
296
.
8.
Salant
,
R. F.
, 1997, “
Modeling Rotary Lip Seals
,”
Wear
0043-1648,
207
, pp.
92
99
.
9.
Salant
,
R. F.
, and
Flaherty
,
A. L.
, 1994, “
Elastohydrodynamic Analysis of Reverse Pumping in Rotary Lip Seals With Microundulations
,”
ASME J. Tribol.
0742-4787,
116
, pp.
56
62
.
10.
Salant
,
R. F.
, and
Flaherty
,
A. L.
, 1995, “
Elastohydrodynamic Analysis of Reverse Pumping in Rotary Lip Seals With Microasperities
,”
ASME J. Tribol.
0742-4787,
117
, pp.
53
59
.
11.
Salant
,
R. F.
, 1997, “
Rotary Lip Seal Operation With an Ingested Meniscus
,”
ASME J. Tribol.
0742-4787,
119
, pp.
205
210
.
12.
Otto
,
D. L.
,
Allen
,
C. M.
, and
Walters
,
C. T.
, 1967, “
Wear Surface and Seal Construction
,” U.S. Patent No. 3,586,340.
13.
Otto
,
D. L.
, and
Paterson
,
P. C.
, 1971, “
Wear Surface for Facilitating Lubrication of Elements in Engagement Therewith
,” U.S. Patent, No. 3,572,730.
14.
Anno
,
J. N.
,
Walowit
,
J. A.
, and
Allen
,
C. M.
, 1969, “
Load Support and Leakage From Microasperity-Lubricated Face Seals
,”
ASME J. Lubr. Technol.
0022-2305,
9
(
4
), pp.
726
731
.
15.
Lubrecht
,
A. A.
,
Ten Napel
,
W. E.
, and
Bosma
,
R.
, 1988, “
The Influence of Longitudinal and Transverse Roubhness on the Elastohydrodynamic Lubrication of Circular Contacts
,”
ASME J. Tribol.
0742-4787,
110
, pp.
421
426
.
16.
Evans
,
H. P.
, and
Snidle
,
R. W.
, 1996, “
Analysis of Microelastohydrodynamic Lubrication for Engineering Contacts
,”
Tribol. Int.
0301-679X,
29
(
8
), pp.
659
667
.
17.
Jiang
,
X.
,
Hua
,
D. Y.
,
Cheng
,
H. S.
,
Ai
,
X.
, and
Lee
,
S. C.
, 1999, “
A Mixed Elastohydrodynamic Lubrication Model With Asperity Contact
,”
ASME J. Tribol.
0742-4787,
121
, pp.
481
491
.
18.
Stephens
,
L. S.
,
Sirirpuram
,
R.
,
Hayden
,
M.
, and
McCartt
,
B.
, 2004, “
Deterministic Microasperities on Bearings and Seals Using a Modified LIGA Process
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
126
(
1
), pp.
147
154
.
19.
Kortikar
,
S. N.
,
Stephens
,
L. S.
,
Hadinata
,
P. C.
, and
Siripuram
,
R. B.
, 2003, “
Manufacturing of Microasperities on Thrust Surfaces Using Ultraviolet Photolithography
,”
Proceedings of ASPE Winter Topical Meeting
, Raleigh, NC, pp.
148
154
.
20.
Kelly
,
K. W.
,
Harris
,
C. H.
,
Stephens
,
L. S.
,
Marques
,
C.
, and
Foley
,
D.
, 2001, “
Industrial Applications for LIGA-Fabricated Micro Heat Exchangers
,”
Proc. SPIE
0277-786X,
4559
, pp.
73
84
.
21.
Elrod
,
H. G.
, 1981, “
A Cavitation Algorithm
,”
ASME J. Lubr. Technol.
0022-2305,
103
, pp.
350
354
.
22.
Payvar
,
P.
, and
Salant
,
R. F.
, 1992, “
A Computational Method for Cavitation in A Wavy Mechanical Seal
,”
ASME J. Tribol.
0742-4787,
114
, pp.
199
204
.
23.
Gohar
,
R.
, 2001,
Elastohydrodynamics
, 2nd ed.,
Imperial College Press
,
Singapore
, pp.
152
153
.
24.
Siripuram
,
R.
, 2003, “
Analysis of Hydrodynamic Effects of Microasperity Shapes on Thrust Bearing Surfaces
,” MS thesis, University of Kentucky, Lexington, KY.
25.
Horve
,
L. A.
, 1996,
Shaft Seals for Dynamic Applications
,
Dekker
,
New York
, p.
167
.
26.
Hirano
,
F.
, and
Ishiwata
,
H.
, 1965, “
The Lubricating Condition of a Lip Seal
,”
Proc. Inst. Mech. Eng.
0020-3483,
180–3B
, pp.
187
196
.
You do not currently have access to this content.