A novel nano-to-elastohydrodynamic lubrication (EHL) multiscale approach, developed to integrate molecular-scale phenomena into macroscopic lubrication models based on the continuum hypothesis, is applied to a lubricated contact problem with a ceramic–steel interface and a nanometric film thickness. Molecular dynamics (MD) simulations are used to quantify wall slip occurring under severe confinement. Its dependence on the sliding velocity, film thickness, pressure, and different wall materials is described through representative analytical laws. These are then coupled to a modified Reynolds equation, where a no-slip condition applies to the ceramic surface and slip occurring on the steel wall is described through a Navier-type boundary condition. The results of this nano-to-EHL approach can contradict the well-established lubrication theory for thin films. In fact, slip can occur over the whole contact length, leading to a significant modification of the lubricant flow and consequently of the film thickness. If both walls move at the same velocity, the flow is reduced at the contact inlet and the film thickness decreases. If the nonslipping wall entrains the fluid, this one is accelerated resulting in a larger mass flow; nevertheless, the surface separation is reduced as the lubricant flows even faster in the contact center. The opposite effect occurs if the slipping surface entrains the fluid, causing a lower mass flow but higher film thickness. Finally, friction is generally smaller compared to the classical no-slip case and becomes independent of the sliding velocity as total slip is approached.

References

1.
Habchi
,
W.
,
Vergne
,
P.
,
Eyheramendy
,
D.
, and
Morales-Espejel
,
G.
,
2011
, “
Numerical Investigation of the Use of Machinery Low-Viscosity Working Fluids as Lubricants in Elastohydrodynamic Lubricated Point Contacts
,”
Proc. Inst. Mech. Eng., Part J
,
225
(
6
), pp.
465
477
.10.1177/1350650111399373
2.
Horn
,
R.
, and
Israelachvili
,
J.
,
1981
, “
Direct Measurement of Structural Forces Between Two Surfaces in a Nonpolar Liquid
,”
J. Chem. Phys.
,
75
(
3
), pp.
1400
1411
.10.1063/1.442146
3.
Israelachvili
,
J.
,
1991
,
Intermolecular and Surface Forces
, 2nd revised ed.,
Colloid Science Academic Press
, pp. 245–247.
4.
Allen
,
M.
, and
Tildesley
,
D.
,
1987
,
Computer Simulations of Liquids
,
Clarendon Press
,
Oxford
.
5.
Chan
,
D.
, and
Horn
,
R.
,
1985
, “
The Drainage of Thin Liquid Films Between Solid Surfaces
,”
J. Chem. Phys.
,
83
(
10
), pp.
5311
5324
.10.1063/1.449693
6.
Christenson
,
H.
,
Gruen
,
D.
,
Horn
,
R.
, and
Israelachvili
,
J.
,
1987
, “
Structuring in Liquid Alkanes Between Solid Surfaces: Force Measurements and Mean-Field Theory
,”
J. Chem. Phys.
,
87
(
3
), pp.
1834
1841
.10.1063/1.453196
7.
Gao
,
J.
,
Luedtke
,
W.
, and
Landman
,
U.
,
1997
, “
Layering Transitions and Dynamics of Confined Liquid Films
,”
Phys. Rev. Lett.
,
79
(
4
), pp.
705
708
.10.1103/PhysRevLett.79.705
8.
Jabbarzadeh
,
A.
,
Harrowel
,
P.
, and
Tanner
,
R.
,
2006
, “
Crystal Bridge Formation Marks the Transition to Rigidity in a Thin Lubrication Film
,”
Phys. Rev. Lett.
,
96
(
20
), p.
206102
.10.1103/PhysRevLett.96.206102
9.
Gee
,
M.
,
McGuiggan
,
P.
,
Israelachvili
,
J.
, and
Homola
,
A.
,
1990
, “
Liquid to Solidlike Transitions of Molecularly Thin Films Under Shear
,”
J. Chem. Phys.
,
93
(
3
), pp.
1895
1906
.10.1063/1.459067
10.
Granick
,
S.
,
1991
, “
Motions and Relaxations of Confined Liquids
,”
Science
,
253
(
5026
), pp.
1374
1379
.10.1126/science.253.5026.1374
11.
Fillot
,
N.
,
Berro
,
H.
, and
Vergne
,
P.
,
2011
, “
From Continuous to Molecular Scale in Modelling Elastohydrodynamic Lubrication: Nanoscale Surface Slip Effects on Film Thickness and Friction
,”
Tribol. Lett.
,
43
(
3
), pp.
257
266
.10.1007/s11249-011-9804-8
12.
Jabbarzadeh
,
A.
,
Atkinson
,
J.
, and
Tanner
,
R.
,
2002
, “
The Effect of Branching on Slip and Rheological Properties of Lubricants in Molecular Dynamics Simulation of Couette Shear Flow
,”
Tribol. Int.
,
35
(
1
), pp.
35
46
.10.1016/S0301-679X(01)00089-5
13.
Jabbarzadeh
,
A.
, and
Tanner
,
R.
,
2011
, “
Thin Lubricant Films Confined Between Crystalline Surfaces: Gold Versus Mica
,”
Tribol. Int.
,
44
(
6
), pp.
711
719
.10.1016/j.triboint.2010.01.014
14.
Martini
,
A.
,
Roxin
,
A.
,
Snurr
,
R.
,
Wang
,
Q.
, and
Lichter
,
S.
,
2008
, “
Molecular Mechanisms of Liquid Slip
,”
J. Fluid Mech.
,
600
, pp.
257
269
.10.1017/S0022112008000475
15.
Priezjev
,
N.
, and
Troian
,
S.
,
2004
, “
Molecular Origin and Dynamic Behavior of Slip in Sheared Polymer Films
,”
Phys. Rev. Lett.
,
92
(
1
), p.
018302
.10.1103/PhysRevLett.92.018302
16.
Savio
,
D.
,
Fillot
,
N.
,
Vergne
,
P.
, and
Zaccheddu
,
M.
,
2012
, “
A Model for Wall Slip Prediction of Confined n-Alkanes: Effect of Wall–Fluid Interaction Versus Fluid Resistance
,”
Tribol. Lett.
,
46
(
1
), pp.
11
22
.10.1007/s11249-011-9911-6
17.
Thompson
,
P.
, and
Robbins
,
M.
,
1990
, “
Shear Flow Near Solids: Epitaxial Order and Flow Boundary Conditions
,”
Phys. Rev. A
,
41
(
12
), pp.
6830
6837
.10.1103/PhysRevA.41.6830
18.
Thompson
,
P.
, and
Troian
,
S.
,
1997
, “
A General Boundary Condition for Liquid Flow at Solid Surfaces
,”
Nature
,
389
, pp.
360
362
.10.1038/38686
19.
Kato
,
T.
, and
Matsuoka
,
H.
,
1999
, “
Molecular Layering in Thin-Film Elastohydrodynamics
,”
Proc. Inst. Mech. Eng., Part J
,
213
(
5
), pp.
363
369
.10.1243/1350650991542730
20.
Teodorescu
,
M.
,
Balakrishnan
,
S.
, and
Rahnejat
,
H.
,
2006
, “
Physics of Ultra-Thin Surface Films on Molecularly Smooth Surfaces
,”
Proc. Inst. Mech. Eng., Part N
,
220
(
1
), pp.
7
18
.10.1243/17403499JNN59
21.
Martini
,
A.
,
Liu
,
Y.
,
Snurr
,
R.
, and
Wang
,
Q.
,
2006
, “
Molecular Dynamics Characterization of Thin Film Viscosity for EHL Simulation
,”
Tribol. Lett.
,
21
(
3
), pp.
217
225
.10.1007/s11249-006-9023-x
22.
Chen
,
D.
, and
Bogy
,
D.
,
2010
, “
Comparisons of Slip-Corrected Reynolds Lubrication Equations for the Air Bearing Film in the Head-Disk Interface of Hard Disk Drives
,”
Tribol. Lett.
,
37
(
2
), pp.
191
201
.10.1007/s11249-009-9506-7
23.
Chu
,
L.
,
Lin
,
J.
,
Li
,
W.
, and
Lu
,
J.
,
2012
, “
A Model for Line-Contact EHL Problems—Consideration of Effects of Navier-Slip and Lubricant Rheology
,”
ASME J. Tribol.
,
134
(
3
), p.
031502
.10.1115/1.4006860
24.
Fukui
,
S.
, and
Kaneko
,
R.
,
1988
, “
Analysis of Ultra-Thin Gas Film Lubrication Based on Linearized Boltzmann Equation: First Report—Derivation of a Generalized Lubrication Equation Including Thermal Creep Flow
,”
ASME J. Tribol.
,
110
(
2
), pp.
253
261
.10.1115/1.3261594
25.
Sham
,
T.
, and
Tichy
,
J.
,
1997
, “
A Scheme for Hybrid Molecular-Dynamics Finite-Element Analysis of Thin-Film Lubrication
,”
Wear
,
207
(
1–2
), pp.
100
106
.10.1016/S0043-1648(96)07471-6
26.
Ching
,
W.-Y.
,
Xu
,
Y.-N.
,
Gale
,
J.
, and
Rühle
,
M.
,
1998
, “
Ab-Initio Total Energy Calculation of Alpha- and Beta-Silicon Nitride and the Derivation of Effective Pair Potentials With Application to Lattice Dynamics
,”
J. Am. Ceram. Soc.
,
81
(
12
), pp.
3189
3196
.10.1111/j.1151-2916.1998.tb02755.x
27.
Rogal
,
L.
,
Dutkiewicz
,
J.
,
Czeppe
,
T.
,
Bonarski
,
J.
, and
Olszowska-Sobieraj
,
B.
,
2010
, “
Characteristics of 100Cr6 Bearing Steel After Thixoforming Process Performed With Prototype Device
,”
Trans. Nonferrous Metals Soc. China
,
20
(
Suppl. 3
), pp.
1033
1036
.10.1016/S1003-6326(10)60626-7
28.
Berro
,
H.
,
2010
, “
A Molecular Dynamics Approach to Nano-Scale Lubrication
,” Ph.D. thesis, MEGA, INSA de Lyon, 2010ISAL0084, http://theses.insa-lyon.fr/publication/2010ISAL0084/these.pdf
29.
Borgen
,
O.
, and
Seip
,
H. M.
,
1961
, “
The Crystal Structure of Beta-Si3N4
,”
Acta Chem. Scand.
,
15
(8), p. 1789.10.3891/acta.chem.scand.15-1789
30.
Lide
,
D.
,
2004–2005
,
Handbook of Chemistry and Physics
, 85th ed.,
CRC Press
, Boca Raton, pp. 4–161.
31.
Rollmann
,
G.
,
Rohrbach
,
A.
,
Entel
,
P.
, and
Hafner
,
J.
,
2004
, “
First-Principles Calculation of the Structure and Magnetic Phases of Hematite
,”
Phys. Rev. B
,
69
(
16
), p.
165107
.10.1103/PhysRevB.69.165107
32.
Cornell
,
W.
,
Cieplak
,
P.
,
Bayly
,
C.
,
Gould
,
I.
,
Merz
,
K.
,
Ferguson
,
D.
,
Spellmeyer
,
D.
,
Fox
,
T.
,
Caldwell
,
J.
, and
Kollman
,
P.
,
1995
, “
A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids and Organic Molecules
,”
J. Am. Chem. Soc.
,
117
(
19
), pp.
5179
5197
.10.1021/ja00124a002
33.
Jorgensen
,
W.
, and
Tirado-Rives
,
J.
,
1988
, “
The OPLS Force Field for Proteins. Energy Minimizations for Crystals of Cyclic Peptides and Crambin
,”
J. Am. Chem. Soc.
,
110
(
6
), pp.
1657
1723
.10.1021/ja00214a001
34.
Minfray
,
C.
,
Mogne
,
T. L.
,
Martin
,
J.-M.
,
Onodera
,
T.
,
Nara
,
S.
,
Takahashi
,
S.
,
Tsuboi
,
H.
,
Koyama
,
M.
,
Endou
,
A.
,
Takaba
,
H.
,
Kubo
,
M.
,
Carpio
,
C. D.
, and
Miyamoto
,
A.
,
2008
, “
Experimental and Molecular Dynamics Simulations of Tribochemical Reactions With ZDDP: Zinc Phosphate–Iron Oxide Reaction
,”
Tribol. Trans.
,
51
(
5
), pp.
589
601
.10.1080/10402000802011737
35.
Zhang
,
L.
,
Balasundaram
,
R.
,
Gehrke
,
S.
, and
Jiang
,
S.
,
2001
, “
Nonequilibrium Molecular Dynamics Simulations of Confined Fluids in Contact With the Bulk
,”
J. Chem. Phys.
,
114
(
15
), pp.
6869
6877
.10.1063/1.1359179
36.
Xia
,
T.
,
Ouyang
,
J.
,
Ribarsky
,
M.
, and
Landman
,
U.
,
1992
, “
Interfacial Alkane Films
,”
Phys. Rev. Lett.
,
69
(
13
), pp.
1967
1970
.10.1103/PhysRevLett.69.1967
37.
Schneider
,
T.
, and
Stoll
,
E.
,
1978
, “
Molecular-Dynamics Study of a Three-Dimensional One-Component Model for Distortive Phase Transitions
,”
Phys. Rev. B
,
17
(
3
), pp.
1302
1322
.10.1103/PhysRevB.17.1302
38.
Gupta
,
S.
,
Cochran
,
H.
, and
Cummings
,
P.
,
1997
, “
Shear Behavior of Squalane and Tetracosane Under Extreme Confinement. III. Effect of Confinement on Viscosity
,”
J. Chem. Phys.
,
107
(
23
), pp.
10335
10343
.10.1063/1.474173
39.
Jabbarzadeh
,
A.
,
Atkinson
,
J.
, and
Tanner
,
R.
,
1999
, “
Wall Slip in the Molecular Dynamics Simulation of Thin Films of Hexadecane
,”
J. Chem. Phys.
,
110
(
5
), pp.
2612
2620
.10.1063/1.477982
40.
Bocquet
,
L.
, and
Barrat
,
J.-L.
,
2007
, “
Flow Boundary Conditions From Nano- to Micro-Scales
,”
Soft Matter
,
3
(
6
), pp.
685
693
.10.1039/b616490k
41.
Martini
,
A.
,
Hsu
,
H.
,
Patankar
,
N.
, and
Lichter
,
S.
,
2008
, “
Slip at High Shear Rates
,”
Phys. Rev. Lett.
,
100
(
20
), p.
206001
.10.1103/PhysRevLett.100.206001
42.
Priezjev
,
N.
,
2007
, “
Rate-Dependent Slip Boundary Conditions for Simple Fluids
,”
Phys. Rev. E
,
75
(
5
), p.
051605
.10.1103/PhysRevE.75.051605
43.
Bridgman
,
P.
,
1926
, “
The Effect of Pressure on the Viscosity of Forty-Three Pure Liquids
,”
Proc. Am. Acad. Art Sci.
,
61
(
3
), pp.
57
99
.10.2307/20026138
44.
Cauldwell
,
D.
,
Trusler
,
J.
,
Vesovic
,
V.
, and
Wakeham
,
W.
,
2009
, “
Viscosity and Density of Five Hydrocarbon Liquids at Pressures up to 200 MPa and Temperatures up to 473 K
,”
J. Chem. Eng. Data
,
54
(
2
), pp.
359
366
.10.1021/je800417q
45.
Berro
,
H.
,
Fillot
,
N.
, and
Vergne
,
P.
,
2010
, “
Hybrid Diffusion: An Efficient Method for Kinetic Temperature Calculation in Molecular Dynamics Simulations of Confined Lubricant Films
,”
Tribol. Lett.
,
37
(
1
), pp.
1
13
.10.1007/s11249-009-9484-9
46.
Cento
,
P.
, and
Dareing
,
D.
,
1999
, “
Ceramic Materials in Hybrid Ball Bearings
,”
Tribol. Trans.
,
42
(
4
), pp.
707
714
.10.1080/10402009908982273
47.
Habchi
,
W.
,
Eyheramendy
,
D.
,
Vergne
,
P.
, and
Morales-Espejel
,
G.
,
2012
, “
Stabilized Fully-Coupled Finite Elements for Elastohydrodynamic Lubrication Problems
,”
Adv. Eng. Softw.
,
46
(
1
), pp.
4
18
.10.1016/j.advengsoft.2010.09.010
48.
Reynolds
,
O.
,
1886
, “
On the Theory of Lubrication and Its Application to Mr. Beauchamp Tower's Experiments, Including an Experimental Determination of the Viscosity of Olive Oil
,”
Philos. Trans. R. Soc. London
,
177
, pp.
157
234
.10.1098/rstl.1886.0005
49.
Habchi
,
W.
,
Eyheramendy
,
D.
,
Vergne
,
P.
, and
Morales-Espejel
,
G.
,
2008
, “
A Full-System Approach of the Elastohydrodynamic Line/Point Contact Problem
,”
ASME J. Tribol.
,
130
(
2
), p.
021501
.10.1115/1.2842246
50.
Dowson
,
D.
, and
Higginson
,
G.
,
1966
,
Elastohydrodynamic Lubrication, The Fundamentals of Roller and Gear Lubrication
,
Pergamon Press
, Oxford, p. 80.
51.
Roelands
,
C.
,
1966
, “
Correlational Aspects of the Viscosity–Temperature–Pressure Relationship of Lubricating Oil
,” Ph.D. thesis, Techische Hogeschool Delft, Delft, The Netherlands. Available at: http://repository.tudelft.nl/view/ir/uuid%3A1fb56839-9589-4ffb-98aa-4a20968d1f90/
52.
Szeri
,
A.
,
2005
,
Fluid Film Lubrication: Theory and Design
,
Cambridge University Press
, Cambridge, pp. 73–80.
You do not currently have access to this content.