The friction and wear properties of four different types of magneto-rheological (MR) elastomer were investigated. The MR elastomers have different matrix materials and structures. Most MR elastomers have a silicone matrix, since it has a more significant MR effect under a magnetic field compared to other materials. The mechanical properties of silicone, however, are poor compared to other materials, so it is difficult to use them in engineering applications. Therefore, a new polyurethane matrix material was used to enhance the friction and wear properties of MR elastomer. Additionally, two different matrix materials (silicone and polyurethane) were synthesized, and MR elastomers were structurally combined to improve the friction and wear performance. The friction characteristics of each MR elastomer were evaluated under reciprocating operating conditions. Wear depth was also measured to estimate the wear resistance. The test results show that the friction and wear performance of the modified MR elastomers are enhanced compared with the silicone-based MR elastomer.

References

1.
Carlson
,
D. J.
, and
Jolly
,
M. R.
,
2000
, “
MR Fluid, Foam and Elastomer Devices
,”
Mechatronics
,
10
(
4–5
), pp.
555
569
.10.1016/S0957-4158(99)00064-1
2.
Ginder
,
J. M.
,
Nichols
,
M. E.
,
Elie
,
L. D.
, and
Tardiff
,
J. L.
,
1999
, “
Magnetorheological Elastomers: Properties and Applications
,”
Proc. SPIE
,
3675
, pp.
131
138
.10.1117/12.352787
3.
Lee
,
D. W.
,
Lee
,
K.
,
Lee
,
C. H.
,
Kim
,
C. H.
, and
Cho
,
W. O.
,
2013
, “
A Study on the Tribological Characteristics of a Magneto-Rheological Elastomer
,”
ASME J. Tribol.
,
135
(
1
), p.
014501
.10.1115/1.4023080
4.
Xu
,
Z.
,
Gong
,
X.
,
Liao
,
G.
, and
Chen
,
X.
,
2010
, “
An Active-Damping-Compensated Magnetorheological Elastomer Adaptive Tuned Vibration Absorber
,”
J. Intell. Mater. Syst. Struct.
,
21
(
10
), pp.
1039
1047
.10.1177/1045389X10375485
5.
Liao
,
G.
,
Gong
,
X.
,
Kang
,
C.
, and
Xuan
,
S.
,
2011
, “
The Design of an Active–Adaptive Tuned Vibration Absorber Based on Magnetorheological Elastomer and Its Vibration Attenuation Performance
,”
Smart Mater. Struct.
,
20
(
7
), p.
075015
.10.1088/0964-1726/20/7/075015
6.
Liao
,
G.
,
Gong
,
X.
,
Xuan
,
S.
,
Kang
,
C.
, and
Zong
,
L.
,
2012
, “
Development of a Real-Time Tunable Stiffness and Damping Vibration Isolator Based on Magnetorheological Elastomer
,”
J. Intell. Mater. Syst. Struct.
,
23
(
1
), pp.
25
33
.10.1177/1045389X11429853
7.
Danas
,
K.
,
Kankanala
,
S.
, and
Triantafyllidis
,
N.
,
2012
, “
Experiments and Modeling of Iron-Particle-Filled Magnetorheological Elastomers
,”
J. Mech. Phys. Solids
,
60
(
1
), pp.
120
138
.10.1016/j.jmps.2011.09.006
8.
Chen
,
L.
,
Gong
,
X. l.
,
Jiang
,
W.
,
Yao
,
J.
,
Deng
,
H.
, and
Li
,
W.
,
2007
, “
Investigation on Magnetorheological Elastomers Based on Natural Rubber
,”
J. Mater. Sci.
,
42
(
14
), pp.
5483
5489
.10.1007/s10853-006-0975-x
9.
Hu
,
Y.
,
Wang
,
Y.
,
Gong
,
X.
,
Gong
,
X.
,
Zhang
,
X.
,
Jiang
,
W.
,
Zhang
,
P.
, and
Chen
,
Z.
,
2005
, “
New Magnetorheological Elastomers Based on Polyurethane/Si-Rubber Hybrid
,”
Polym. Test.
,
24
(
3
), pp.
324
329
.10.1016/j.polymertesting.2004.11.003
10.
Hu
,
Y.
,
Wang
,
Y.
,
Gong
,
X.
,
Gong
,
X.
,
Zhang
,
X.
,
Jiang
,
W.
,
Zhang
,
P.
, and
Chen
,
Z.
,
2005
, “
Magnetorheological Elastomers Based on Polyurethane/Si-Rubber Hybrid
,”
Int. J. Mod. Phys. B
,
19
(
07n09
), pp.
1114
1120
.10.1142/S0217979205029948
11.
Fuchs
,
A.
,
Zhang
,
Q.
,
Elkins
,
J.
,
Gordaninejad
,
F.
, and
Evrensel
,
C.
,
2007
, “
Development and Characterization of Magnetorheological Elastomers
,”
J. Appl. Polym. Sci.
,
105
(
5
), pp.
2497
2508
.10.1002/app.24348
12.
Hrehorova
,
E. V.
,
Bliznyuk
,
N.
,
Pud
,
A. A.
,
Shevchenko
,
V. V.
, and
Fatyeyeva
,
K. Y.
,
2007
, “
Electrical Properties and Fractal Behavior of Polyurethane Elastomer/Polyaniline Composites Under Mechanical Deformation
,”
Polymer
,
48
(
15
), pp.
4429
4437
.10.1016/j.polymer.2007.05.065
13.
Wang
,
Y.
,
Hu
,
Y.
,
Gong
,
X.
,
Jiang
,
W.
,
Zhang
,
P.
, and
Chen
,
Z.
,
2007
, “
Preparation and Properties of Magnetorheological Elastomers Based on Silicon Rubber/Polystyrene Blend Matrix
,”
J. Appl. Polym. Sci.
,
103
(
5
), pp.
3143
3149
.10.1002/app.24598
14.
Wei
,
B.
,
Gong
,
X.
, and
Jiang
,
W.
,
2010
, “
Influence of Polyurethane Properties on Mechanical Performances of Magnetorheological Elastomers
,”
J. Appl. Polym. Sci.
,
116
(
2
), pp.
771
778
.10.1002/app.31474
15.
Wu
,
J.
,
Gong
,
X.
,
Fan
,
Y.
, and
Xia
,
H.
,
2010
, “
Anisotropic Polyurethane Magnetorheological Elastomer Prepared Through In Situ Polycondensation Under a Magnetic Field
,”
Smart Mater. Struct.
,
19
(
10
), p.
105007
.10.1088/0964-1726/19/10/105007
16.
Chokkalingam
,
R.
,
Pandi
,
R. S.
, and
Mahendran
,
M.
,
2011
, “
Magnetomechanical Behavior of Fe/PU Magnetorheological Elastomers
,”
J. Compos. Mater.
,
45
(
15
), pp.
1545
1552
.10.1177/0021998310383733
17.
Wu
,
J.
,
Gong
,
X.
,
Fan
,
Y.
, and
Xia
,
H.
,
2011
, “
Physically Crosslinked Poly (Vinyl Alcohol) Hydrogels With Magnetic Field Controlled Modulus
,”
Soft Matter
,
7
(
13
), pp.
6205
6212
.10.1039/c1sm05386h
18.
Wu
,
J.
,
Gong
,
X.
,
Fan
,
Y.
, and
Xia
,
H.
,
2012
, “
Improving the Magnetorheological Properties of Polyurethane Magnetorheological Elastomer Through Plasticization
,”
J. Appl. Polym. Sci.
,
123
(
4
), pp.
2476
2484
.10.1002/app.34808
19.
Hu
,
W.
, and
Wereley
,
N. M.
,
2008
, “
Hybrid Magnetorheological Fluid–Elastomeric Lag Dampers for Helicopter Stability Augmentation
,”
Smart Mater. Struct.
,
17
(
4
), p.
045021
.10.1088/0964-1726/17/4/045021
20.
Zhang
,
W.
,
Gong
,
X.
,
Xuan
,
S.
, and
Xu
,
Y.
,
2010
, “
High-Performance Hybrid Magnetorheological Materials: Preparation and Mechanical Properties
,”
Ind. Eng. Chem. Res.
,
49
(
24
), pp.
12471
12476
.10.1021/ie101904f
21.
Bhushan
,
B.
,
1999
,
Principles and Applications of Tribology
,
Wiley
,
New York
.
22.
Barquins
,
M.
,
1985
, “
Sliding Friction of Rubber and Schallamach Waves—A Review
,”
Mater. Sci. Eng.
,
73
, pp.
45
63
.10.1016/0025-5416(85)90295-2
23.
Briggs
,
G. A. D.
, and
Briscoe
,
B. J.
,
1978
, “
How Rubber Grips and Slips Schallamach Waves and the Friction of Elastomers
,”
Philos. Mag. A
,
38
(
4
), pp.
387
399
.10.1080/01418617808239243
24.
Maegawa
,
S.
, and
Nakano
,
K.
,
2010
, “
Mechanism of Stick-Slip Associated With Schallamach Waves
,”
Wear
,
268
(
7–8
), pp.
924
930
.10.1016/j.wear.2009.12.018
You do not currently have access to this content.