Experiments were performed on a ring-on-disk tribometer under lubricated conditions. Friction force was measured throughout the friction process. The parameter predictability was used to provide a quantitative description of the intrinsic randomness of the friction force. The parameter dynamic difference was used to detect the dynamic abrupt changes. The results show that, from the perspective of dynamics, the friction process can be divided into the abrupt changing process through which the intrinsic randomness is enhanced, the dynamic stable process through which the system maintains the strong intrinsic randomness, and the abrupt changing process through which the intrinsic randomness is weakened.
Issue Section:
Friction and Wear
References
1.
Blau
, P. J.
, 2001
, “The Significance and Use of the Friction Coefficient
,” Tribol. Int.
, 34
(9
), pp. 585
–591
.2.
Blau
, P. J.
, 1987
, “A Model for Run-In and Other Transitions in Sliding Friction
,” ASME J. Tribol.
, 109
(3
), pp. 537
–543
.3.
Kim
, K.
, 2010
, “Analysis of Friction Coefficient Evolutions on Coated Systems Under Sliding Conditions
,” Wear
, 269
(9
), pp. 655
–663
.4.
Peng
, Z.
, and Kessissoglou
, N.
, 2003
, “An Integrated Approach to Fault Diagnosis of Machinery Using Wear Debris and Vibration Analysis
,” Wear
, 255
(7
), pp. 1221
–1232
.5.
Shakhvorostov
, D.
, Pöhlmann
, K.
, and Scherge
, M.
, 2004
, “An Energetic Approach to Friction, Wear and Temperature
,” Wear
, 257
(1
), pp. 124
–130
.6.
Nembhard
, A. D.
, Sinha
, J. K.
, Pinkerton
, A. J.
, and Elbhbah
, K.
, 2014
, “Condition Monitoring of Rotating Machines Using Vibration and Bearing Temperature Measurements
,” Advances in Condition Monitoring of Machinery in Non-Stationary Operations
, G.
Dalpiaz
, R.
Rubini
, G. D.
Elia
, M.
Cocconcelli
, F.
Chaari
, R.
Zimroz
, W.
Bartelmus
, and M. Haddar, eds., Springer
, Berlin, Heidelberg
, pp. 159
–169
.7.
Yuan
, C. Q.
, Peng
, Z.
, Yan
, X. P.
, and Zhou
, X. C.
, 2008
, “Surface Roughness Evolutions in Sliding Wear Process
,” Wear
, 265
(3
), pp. 341
–348
.8.
Ebersbach
, S.
, Peng
, Z.
, and Kessissoglou
, N. J.
, 2006
, “The Investigation of the Condition and Faults of a Spur Gearbox Using Vibration and Wear Debris Analysis Techniques
,” Wear
, 260
(1
), pp. 16
–24
.9.
Yuan
, C. Q.
, Peng
, Z.
, Zhou
, X. C.
, and Yan
, X. P.
, 2005
, “The Characterization of Wear Transitions in Sliding Wear Process Contaminated With Silica and Iron Powder
,” Tribol. Int.
, 38
(2
), pp. 129
–143
.10.
Ji
, C. C.
, Zhu
, H.
, Jiang
, W.
, and Lu
, B. B.
, 2010
, “Running-In Test and Fractal Methodology for Worn Surface Topography Characterization
,” Chin. J. Mech. Eng.
, 23
(5
), pp. 600
–605
.11.
Syta
, A.
, Jonak
, J.
, Jedlinski
, L.
, and Litak
, G.
, 2012
, “Failure Diagnosis of a Gear Box by Recurrences
,” ASME J. Vib. Acoust.
, 134
(4
), p. 041006.12.
Nosonovsky
, M.
, 2010
, “Entropy in Tribology: In Search of Applications
,” Entropy
, 12
(6
), pp. 1345
–1390
.13.
Fleurquin
, P.
, Fort
, H.
, Kornbluth
, M.
, Sandler
, R.
, Segal
, M.
, and Zypman
, F.
, 2010
, “Negentropy Generation and Fractality in Dry Friction of Polished Surfaces
,” Entropy
, 12
(3
), pp. 480
–489
.14.
Nosonovsky
, M.
, and Mortazavi
, V.
, 2013
, Friction-Induced Vibrations to Self-Organization: Mechanics and Non-Equilibrium Thermodynamics of Sliding Contact
, CRC Press
, Boca Raton.15.
Fox-Rabinovich
, G. S.
, Gershman
, I. S.
, Yamamoto
, K.
, Biksa
, A.
, Veldhuis
, S. C.
, and Beake
, B. D.
, 2010
, “Self-Organization During Friction in Complex Surface Engineered Tribosystems
,” Entropy
, 12
(2
), pp. 275
–288
.16.
Li
, G.
, Huang
, Y.
, and Lin
, Y.
, 2013
, “Stability Analysis of Running-In System Based on Nyquist Curve of Friction Vibration
,” Tribol. Int.
, 60
, pp. 209
–215
.17.
Zhou
, Y. K.
, Zhu
, H.
, Zuo
, X.
, and Yang
, J. H.
, 2014
, “Chaotic Characteristics of Measured Temperatures During Sliding Friction
,” Wear
, 317
(1
), pp. 17
–25
.18.
Zhou
, Y. K.
, Zhu
, H.
, Zuo
, X.
, Li
, Y.
, and Chen
, N. X.
, 2015
, “The Nonlinear Nature of Friction Coefficient in Lubricated Sliding Friction
,” Tribol. Int.
, 88
, pp. 8
–16
.19.
Zhu
, H.
, Ge
, S. R.
, Cao
, X.
, and Tang
, W.
, 2007
, “The Changes of Fractal Dimensions of Frictional Signals in the Running-In Wear Process
,” Wear
, 263
(7
), pp. 1502
–1507
.20.
Sun
, D.
, Li
, G. B.
, Wei
, H. J.
, and Liao
, H. F.
, 2015
, “Experimental Study on the Chaotic Attractor Evolvement of the Friction Vibration in a Running-In Process
,” Tribol. Int.
, 88
, pp. 290
–297
.21.
Li
, Y.
, and Feng
, Z. C.
, 2004
, “Bifurcation and Chaos in Friction-Induced Vibration
,” Commun. Nonlinear Sci.
, 9
(6
), pp. 633
–647
.22.
Morrison
, F.
, 2012
, The Art of Modeling Dynamic Systems: Forecasting for Chaos, Randomness and Determinism
, Wiley
, New York
.23.
Manuca
, R.
, and Savit
, R.
, 1996
, “Stationarity and Nonstationarity in Time Series Analysis
,” Physica D
, 99(2–3), pp. 134
–161
.24.
Takens
, F.
, 1981
, Detecting Strange Attractors in Turbulence
, Springer-Verlag
, Berlin
.25.
Ding
, M. Z.
, Grebogi
, C.
, Ott
, E.
, Sauer
, T.
, and Yorke
, J. A.
, 1993
, “Estimating Correlation Dimension From a Chaotic Time Series: When Does Plateau Onset Occur
,” Physica D
, 69
(3–4
), pp. 404
–424
.26.
Cao
, L.
, 1997
, “Practical Method for Determining the Minimum Embedding Dimension of a Scalar Time Series
,” Physica D
, 110
(1
), pp. 43
–50
.27.
Michael
, S.
, 2005
, Applied Nonlinear Time Series Analysis: Applications in Physics, Physiology and Finance
, World Scientific
, Singapore
.28.
Kantz
, H.
, 1994
, “Quantifying the Closeness of Fractal Measures
,” Phys. Rev. E
, 49
(6
), pp. 5091
–5097
.29.
Stewart
, I.
, 2000
, “Mathematics: The Lorenz Attractor Exists
,” Nature
, 406
(6799
), pp. 948
–949
.30.
Ueta
, T.
, and Chen
, G.
, 2000
, “Bifurcation Analysis of Chen's Equation
,” Int. J. Bifurcation Chaos
, 10
(8
), pp. 1917
–1931
.31.
Maris
, D. T.
, and Goussis
, D. A.
, 2015
, “The Hidden Dynamics of the Rossler Attractor
,” Physica D
, 295–296
, pp. 66
–90
.Copyright © 2016 by ASME
You do not currently have access to this content.