The work presented in this paper describes a new approach to calculate the film profile, friction, and fluid transport of a reciprocating U-cup seal used in a hydraulic piston pump. An innovative partial lubrication model of the seal is developed, which connects the inverse hydrodynamic lubrication method and Greenwood–Williamson asperity contact model. Finite element models (FEM) were established to simulate deformation behavior under-mounted and pressurized process using finite element code ansys. Based on the finite element simulations, corresponding numerical calculations have been made using the matlab with the inverse hydrodynamic lubrication and asperity contact theories. The accuracy of these models was validated against existing experimental data to ensure that they can predict the sealing performance sufficiently. The effects of the operating parameters as well as the magnitude of interference on the sealing performance in terms of friction, fluid transport, and film thickness were discussed. The results of the simulation indicate that the interference fit, sealed pressure, and rod velocity play significant roles to improve the wear and seizure resistance capability that is critical to the service life of the seal.

References

1.
McKee
,
M.
, and
Gordaninejad
,
F.
,
2017
, “
Reciprocating Shaft Seals for High-Temperature and High-Pressure Applications: A Review
,”
ASME J. Tribol.
,
140
(
3
), p. 032202.
2.
White
,
C. M.
, and
Denny
,
D. F.
,
1948
,
The Sealing Mechanism of Flexible Packings
,
Scientific and Technical Memorandum, No 3/47. H.M. Stationery Off.
,
London
.
3.
Rana
,
A. S.
, and
Sayles
,
R. S.
,
2005
, “
An Experimental Study on the Friction Behaviour of Aircraft Hydraulic Actuator Elastomeric Reciprocating Seals
,”
Tribol. Interface Eng. Ser.
,
48
, pp.
507
–.
4.
Nikas
,
G. K.
,
Almond
,
R. V.
, and
Burridge
,
G.
,
2014
, “
Experimental Study of Leakage and Friction of Rectangular, Elastomeric Hydraulic Seals for Reciprocating Motion From −54 to + 135 °C and Pressures From 3.4 to 34.5 MPa
,”
Tribol. Trans.
,
57
(
5
), pp.
846
865
.
5.
Peng
,
C.
,
Guo
,
S.
,
Ouyang
,
X.
,
Zhou
,
Q.
, and
Yang
,
H.
,
2018
, “
Mixed Lubrication Modeling of Reciprocating Seals Based on a Developed Multiple-Grid Method
,”
Tribol. Trans.
,
61
(
6
), pp.
1
11
.
6.
Nikas
,
G. K.
,
2018
, “
Fast Performance-Analysis of Rectangular-Rounded Hydraulic Reciprocating Seals: Mathematical Model and Experimental Validation at Temperatures Between −54 and + 135 °C
,”
Tribol. Int.
,
128
, pp.
34
51
.
7.
Field
,
G. J.
, and
Nau
,
B. S.
,
1975
, “
A Theoretical Study of the Elastohydrodynamic Lubrication of Reciprocating Rubber Seals
,”
ASLE Trans.
,
18
(
1
), pp.
48
54
.
8.
Nikas
,
G. K.
,
2002
, “
Elastohydrodynamics and Mechanics of Rectangular Elastomeric Seals for Reciprocating Piston Rods
,”
ASME J. Tribol.
,
125
(
1
), pp.
60
69
.
9.
Salant
,
R. F.
,
Maser
,
N.
, and
Yang
,
B.
,
2006
, “
Numerical Model of a Reciprocating Hydraulic Rod Seal
,”
ASME J. Tribol.
,
129
(
1
), pp.
91
97
.
10.
Thatte
,
A.
, and
Salant
,
R. F.
,
2009
, “
Elastohydrodynamic Analysis of an Elastomeric Hydraulic Rod Seal During Fully Transient Operation
,”
ASME J. Tribol.
,
131
(
3
), p.
031501
.
11.
Li
,
X.
,
Suo
,
S.
,
Guo
,
F.
,
Wu
,
C.
, and
Jia
,
X.
,
2018
, “
A Study of Reciprocating Seals With a New Mixed-Lubrication Model Based on Inverse Lubrication Theory
,”
Lubr. Sci.
,
30
(
3
), pp.
126
136
.
12.
Ongun
,
Y.
,
2008
, “
An Axisymmetric Hydrodynamic Interface Element for Finite-Element Computations of Mixed Lubrication in Rubber Seals
,”
Proc. Inst. Mech. Eng. Part J: J. Eng. Tribol.
,
222
(
3
), pp.
471
481
.
13.
Peng
,
C.
,
Ouyang
,
X.
,
Zhu
,
Y.
,
Guo
,
S.
,
Zhou
,
Q.
, and
Yang
,
H.
,
2018
, “
Investigation Into the Influence of Stretching on Reciprocating Rod Seals Based on a Novel 3-D Model vs Axisymmetric Model
,”
Tribol. Int.
,
117
, pp.
1
14
.
14.
Stupkiewicz
,
S.
, and
Marciniszyn
,
A.
,
2009
, “
Elastohydrodynamic Lubrication and Finite Configuration Changes in Reciprocating Elastomeric Seals
,”
Tribol. Int.
,
42
(
5
), pp.
615
627
.
15.
Bhaumik
,
S.
,
Kumaraswamy
,
A.
,
Guruprasad
,
S.
, and
Bhandari
,
P.
,
2015
, “
Investigation of Friction in Rectangular Nitrile-Butadiene Rubber (NBR) Hydraulic Rod Seals for Defence Applications
,”
J. Mech. Sci. Technol.
,
29
(
11
), pp.
4793
4799
.
16.
Crudu
,
M.
,
Fatu
,
A.
,
Cananau
,
S.
,
Hajjam
,
M.
,
Pascu
,
A.
, and
Cristescu
,
C.
,
2012
, “
A Numerical and Experimental Friction Analysis of Reciprocating Hydraulic ‘U’ rod Seals
,”
Proc. Inst. Mech. Eng. Part J: J. Eng. Tribol.
,
226
(
9
), pp.
785
794
.
17.
Fatu
,
A.
, and
Hajjam
,
M.
,
2011
, “
Numerical Modelling of Hydraulic Seals by Inverse Lubrication Theory
,”
Proc. Inst. Mech. Eng. Part J: J. Eng. Tribol.
,
225
(
12
), pp.
1159
1173
.
18.
Kanters
,
A. F. C.
,
1990
, “
On the Calculation of Leakage and Friction of Reciprocating Elastomeric Seals
,”
Ph.D. thesis
, Eindhoven University of Technology, The Netherlands.
19.
Nikas
,
G. K.
, and
Sayles
,
R. S.
,
2006
, “
Study of Leakage and Friction of Flexible Seals for Steady Motion Via a Numerical Approximation Method
,”
Tribol. Int.
,
39
(
9
), pp.
921
936
.
20.
Dragoni
,
E.
, and
Strozzi
,
A.
,
1988
, “
Analysis of an Unpressurized, Laterally Restrained, Elastomeric O-Ring Seal
,”
ASME J. Tribol.
,
110
(
2
), pp.
193
200
.
21.
Johannesson
,
H. L.
,
1983
, “
Oil Leakage and Friction Forces of Reciprocating O-Ring Seals Considering Cavitation
,”
ASME J. Lubr. Tech.
,
105
(
2
), pp.
288
296
.
22.
Prati
,
E.
, and
Strozzi
,
A.
,
1984
, “
A Study of the Elastohydrodynamic Problem in Rectangular Elastomeric Seals
,”
ASME J. Tribol.
,
106
(
4
), pp.
505
512
.
23.
Schmidt
,
T.
,
André
,
M.
, and
Poll
,
G.
,
2010
, “
A Transient 2D-Finite-Element Approach for the Simulation of Mixed Lubrication Effects of Reciprocating Hydraulic rod Seals
,”
Tribol. Int.
,
43
(
10
), pp.
1775
1785
.
24.
Gadari
,
M. E.
, and
Hajjam
,
M.
,
2018
, “
Effect of the Grooved Rod on the Friction Force of U-Cup Hydraulic Rod Seal With Rough Lip
,”
Tribol. Trans.
,
61
(
4
), pp.
661
670
.
25.
Huang
,
Y.
, and
Salant
,
R. F.
,
2015
, “
Numerical Analysis of a Hydraulic Rod Seal: Flooded vs. Starved Conditions
,”
Tribol. Int.
,
92
, pp.
577
584
.
26.
Gadari
,
E. M.
,
Fatu
,
A.
, and
Hajjam
,
M.
,
2015
, “
Shaft Roughness Effect on Elasto-Hydrodynamic Lubrication of Rotary lip Seals: Experimentation and Numerical Simulation
,”
Tribol. Int.
,
88
, pp.
218
227
.
27.
Yang
,
B.
, and
Salant
,
R. F.
,
2008
, “
A Numerical Model of a Reciprocating Rod Seal With a Secondary Lip
,”
Tribol. Trans.
,
51
(
2
), pp.
119
127
.
28.
Patir
,
N.
,
1978
, “
Effects of Surface Roughness on Partial Film Lubrication Using an Average Flow Model Based on Numerical Simulation
,”
Ph.D. thesis
,
Northwestern University
,
Evanston, IL
.
29.
Greenwood
,
J. A.
, and
Williamson
,
J. B. P.
,
1966
, “
Contact of Nominally Flat Surfaces
,”
Proc. R. Soc. London. Ser. A, Math. Phys. Sci.
,
295
(
1442
), pp.
300
319
.
30.
Streator
,
J. L.
,
2002
, “
A Model of Mixed Lubrication with Capillary Effects
,”
Tribol. Ser.
,
40
, pp.
121
128
.
31.
Patir
,
N.
,
1979
, “
Application of Average Flow Model to Lubrication Between Rough Sliding Surfaces
,”
ASME J. Tribol.
,
101
(
2
), pp.
220
230
.
32.
Huang
,
Y.
,
2014
, “
Elastohydrodynamic Model of Hydraulic rod Seals with Various rod Surfaces
,”
Ph.D. thesis
,
Georgia Institute of Technology
,
Atlanta
.
You do not currently have access to this content.