Abstract

In this study, experiments are conducted to evaluate the effects of friction block shapes and installation angles on the brake noise of high-speed trains on a customized small-scale brake dynamometer. Friction blocks in three different shapes (circle, triangle, and hexagon) and triangular/hexagonal friction blocks at different installation angles are used in the tests. The results indicate that the circular and triangular blocks exhibit low sound pressure with multiple harmonics, whereas the hexagonal friction block produces the highest sound pressure with a single dominant frequency. This difference is attributed to the high contact pressure and severe wear on the surface of the hexagonal friction block. Differences in the installation angle of the triangular/hexagonal friction blocks affect wear debris behavior, distribution of contact pressure, and contact state of the friction interface, consequently influencing noise performance.

References

1.
Tirović
,
M.
,
2009
, “
Energy Thrift and Improved Performance Achieved Through Novel Railway Brake Discs
,”
Appl. Energy
,
86
(
3
), pp.
317
324
. 10.1016/j.apenergy.2008.04.017
2.
Shangguan
,
W.
,
Wang
,
J. J.
,
Wang
,
H. S.
,
Wang
,
J.
, and
Li
,
S. H.
,
2011
, “
The Braking Mode Simulation and Analysis for High-Speed Railway
,”
IEEE International Symposium on Microwave
,
Beijing, China
.
3.
Hassan
,
M. Z.
,
Brooks
,
P. C.
, and
Barton
,
D. C.
,
2013
, “
The Evaluation of Disc Brake Squeal Propensity Through a Fully Coupled Transient Thermomechanical Model
,”
Proc. Inst. Mech. Eng. Part D
,
227
(
3
), pp.
361
375
. 10.1177/0954407012453815
4.
Gbadeyan
,
O. J.
, and
Kanny
,
K.
,
2017
, “
Tribological Behaviours of Polymer-Based Hybrid Nanocomposite Brake Pad
,”
ASME J. Tribol.
,
140
(
3
), p.
032003
. 10.1115/1.4038679
5.
Lorang
,
X.
,
Nguyen
,
Q. S.
,
Margiocchi
,
F.
, and
Gautier
,
P. E.
,
2006
,
Analysis and Simulation of Contact Problems
,
Springer
,
Berlin Heidelberg
, pp.
359
366
.
6.
Abu Bakar
,
A. R.
,
Ouyang
,
H.
,
James
,
S.
, and
Li
,
L.
,
2008
, “
Finite Element Analysis of Wear and Its Effect on Squeal Generation
,”
Proc. Inst. Mech. Eng. Part D
,
222
(
7
), pp.
1153
1165
. 10.1243/09544070JAUTO536
7.
Ouyang
,
H.
,
Abu-Bakar
,
A. R.
, and
Li
,
L.
,
2009
, “
A Combined Analysis of Heat Conduction, Contact Pressure and Transient Vibration of a Disk Brake
,”
Int. J. Veh. Des.
,
51
(
1–2
), pp.
190
206
. 10.1504/IJVD.2009.027121
8.
Fieldhouse
,
J. D.
,
Ashraf
,
N.
,
Talbot
,
C.
,
Pasquet
,
T.
,
Franck
,
P.
, and
Gabriel
,
R.
,
2006
, “
Measurement of the Dynamic Center of Pressure of a Brake Pad During a Braking Operation
,” SAE Technical Paper No. 2006-01-3208.
9.
Zmitrowicz
,
A.
,
2009
, “
Descriptions of Contacts in the Presence of Wear Debris
,”
Proceedings in Applied Mathematics and Mechanics
,
Berlin
, Vol.
9
, No.
1
, pp.
693
694
.
10.
Panier
,
S.
,
Dufrenoy
,
P.
, and
Brémond
,
P.
,
2003
, “
Infrared Characterization of Thermal Gradients on Disc Brakes
,”
Proceedings of SPIE—The International Society for Optical Engineering International Society for Optics and Photonics
,
Orlando, FL
, Vol.
36
, No.
18
, pp.
109
121
.
11.
Jiguang
,
C.
, and
Fei
,
G.
,
2015
, “
Temperature Field and Thermal Stress Analyses of High-Speed Train Brake Disc Under Pad Variations
,”
Open Mech. Eng. J.
,
9
(
1
), pp.
371
378
. 10.2174/1874155X01509010371
12.
Lorang
,
X.
,
Foy-Margiocchi
,
F.
,
Nguyen
,
Q. S.
, and
Gautier
,
P. E.
,
2006
, “
TGV Disc Brake Squeal
,”
J. Sound Vib.
,
293
(
3–5
), pp.
735
746
. 10.1016/j.jsv.2005.12.006
13.
Sinou
,
J. J.
,
Loyer
,
A.
,
Chiello
,
O.
,
Mogenier
,
G.
,
Lorang
,
X.
,
Cocheteux
,
F.
, and
Bellaj
,
S.
,
2013
, “
A Global Strategy Based on Experiments and Simulations for Squeal Prediction on Industrial Railway Brakes
,”
J. Sound Vib.
,
332
(
20
), pp.
5068
5085
. 10.1016/j.jsv.2013.04.008
14.
Chiello
,
O.
,
Sinou
,
J. J.
,
Vincent
,
N.
,
Vermot des Roches
,
G.
,
Cocheteux
,
F.
,
Bellaj
,
S.
, and
Lorang
,
X.
,
2013
, “
Squeal Noise Generated by Railway Disc Brakes: Experiments and Stability Computations on Large Industrial Models
,”
Proceedings of Meetings on Acoustics ICA2013
,
Montreal, Canada
, Vol.
19
, No.
1
, p.
065049
.
15.
Chiello
,
O.
, and
Lorang
,
X.
,
2008
, “
Numerical Investigations Into the Squeal Propensity of a Railway Disc Brake
,”
J. Acoust. Soc. Am.
,
123
(
5
), p.
3171
. 10.1121/1.2933241
16.
Massi
,
F.
,
Berthier
,
Y.
, and
Baillet
,
L.
,
2008
, “
Contact Surface Topography and System Dynamics of Brake Squeal
,”
Wear
,
265
(
11–12
), pp.
1784
1792
. 10.1016/j.wear.2008.04.049
17.
Sherif
,
H. A.
,
2004
, “
Investigation on Effect of Surface Topography of Pad/Disc Assembly on Squeal Generation
,”
Wear
,
257
(
7–8
), pp.
687
695
. 10.1016/j.wear.2004.03.015
18.
Eriksson
,
M.
,
Bergman
,
F.
, and
Jacobson
,
S.
,
1999
, “
Surface Characterisation of Brake Pads After Running Under Silent and Squealing Conditions
,”
Wear
,
232
(
2
), pp.
163
167
. 10.1016/S0043-1648(99)00141-6
19.
Kinkaid
,
N. M.
,
O’Reilly
,
O. M.
, and
Papadopoulos
,
P.
,
2003
, “
Automotive Disc Brake Squeal
,”
J. Sound Vib.
,
267
(
1
), pp.
105
166
. 10.1016/S0022-460X(02)01573-0
20.
Mo
,
J. L.
,
Wang
,
Z. G.
,
Chen
,
G. X.
,
Shao
,
T. M.
,
Zhu
,
M. H.
, and
Zhou
,
Z. R.
,
2013
, “
The Effect of Groove-Textured Surface on Friction and Wear and Friction-Induced Vibration and Noise
,”
Wear
,
301
(
1–2
), pp.
671
681
. 10.1016/j.wear.2013.01.082
21.
Butlin
,
T.
, and
Woodhouse
,
J.
,
2011
, “
A Systematic Experimental Study of Squeal Initiation
,”
J. Sound Vib.
,
330
(
21
), pp.
5077
5095
. 10.1016/j.jsv.2011.05.018
22.
Hetzler
,
H.
, and
Willner
,
K.
,
2012
, “
On the Influence of Contact Tribology on Brake Squeal
,”
Tribol. Int.
,
46
(
1
), pp.
237
246
. 10.1016/j.triboint.2011.05.019
23.
Wang
,
D. W.
,
Mo
,
J. L.
,
Ouyang
,
H.
,
Chen
,
G. X.
,
Zhu
,
M. H.
, and
Zhou
,
Z. R.
,
2014
, “
Experimental and Numerical Studies of Friction-Induced Vibration and Noise and the Effects of Groove-Textured Surfaces
,”
Mech. Syst. Signal Process.
,
46
(
2
), pp.
191
208
. 10.1016/j.ymssp.2014.02.007
24.
Wang
,
X. C.
,
Mo
,
J. L.
,
Wang
,
D. W.
,
Ouyang
,
H.
,
Zhao
,
J.
,
Chen
,
G. X.
, and
Zhu
,
M. H.
,
2015
, “
Experimental and Numerical Study of Friction-Induced Noise of Brake Pad Materials Having Grooved Surface
,”
Mech. Mach. Sci.
,
23
, pp.
1043
1054
. 10.1007/978-3-319-09918-7_92
25.
Chen
,
F.
,
2009
, “
Automotive Disk Brake Squeal: An Overview
,”
Int. J. Veh. Des.
,
51
(
1–2
), pp.
39
72
. 10.1504/IJVD.2009.027115
26.
Brunetti
,
J.
,
Massi
,
F.
,
D׳Ambrogio
,
W.
, and
Berthier
,
Y.
,
2016
, “
A New Instability Index for Unstable Mode Selection in Squeal Prediction by Complex Eigenvalue Analysis
,”
J. Sound Vib.
,
377
, pp.
106
122
. 10.1016/j.jsv.2016.05.002
27.
Renaud
,
F.
,
Chevallier
,
G.
,
Dion
,
J. L.
, and
Taudière
,
G.
,
2012
, “
Motion Capture of a Pad Measured With Accelerometers During Squeal Noise in a Real Brake System
,”
Mech. Syst. Signal Process.
,
33
, pp.
155
166
. 10.1016/j.ymssp.2012.06.027
28.
Massi
,
F.
,
Baillet
,
L.
,
Giannini
,
O.
, and
Sestieri
,
A.
,
2007
, “
Brake Squeal: Linear and Nonlinear Numerical Approaches
,”
Mech. Syst. Signal Process.
,
21
(
6
), pp.
2374
2393
. 10.1016/j.ymssp.2006.12.008
29.
Rusli
,
M.
, and
Okuma
,
M.
,
2007
, “
Effect of Surface Topography on Mode-Coupling Model of Dry Contact Sliding Systems
,”
J. Sound Vib.
,
308
(
3–5
), pp.
721
734
. 10.1016/j.jsv.2007.03.046
30.
Tang
,
W.
,
Zhou
,
Y.
,
Zhu
,
H.
, and
Yang
,
H.
,
2013
, “
The Effect of Surface Texturing on Reducing the Friction and Wear of Steel Under Lubricated Sliding Contact
,”
Appl. Surf. Sci.
,
273
, pp.
199
204
. 10.1016/j.apsusc.2013.02.013
31.
Ding
,
C.
,
Zhu
,
H.
,
Sun
,
G.
,
Jiang
,
Y.
, and
Wei
,
C.
,
2018
, “
Dynamic States Recognition of Friction Noise in the Wear Process Based on Moving Cut Data-Approximate Entropy
,”
ASME J. Tribol.
,
140
(
5
), p.
051604
. 10.1115/1.4039525
32.
Chen
,
G. X.
,
Zhou
,
Z. R.
,
Kapsa
,
P.
, and
Vincent
,
L.
,
2003
, “
Experimental Investigation Into Squeal Under Reciprocating Sliding
,”
Tribol. Int.
,
36
(
12
), pp.
961
971
. 10.1016/S0301-679X(03)00106-3
33.
Wan
,
Z.
,
Liu
,
X.
,
Shan
,
Y.
,
He
,
T.
,
Wang
,
H.
, and
Chen
,
G. S.
,
2019
, “
The Effect of Rigid Particle on Friction Properties of Automotive Disk Brake Based on a Local Modeling
,”
ASME J. Tribol.
,
141
(
4
), p.
041403
. 10.1115/1.4042268
34.
Bergman
,
F.
,
Eriksson
,
M.
, and
Jacobson
,
S.
,
1999
, “
Influence of Disc Topography on Generation of Brake Squeal
,”
Wear
,
225
, pp.
621
628
. 10.1016/S0043-1648(99)00064-2
35.
Kchaou
,
M.
,
Lazim
,
A. M.
,
Hamid
,
M. A.
, and
Bakar
,
A. A.
,
2017
, “
Experimental Studies of Friction-Induced Brake Squeal: Influence of Environmental Sand Particles in the Interface Brake Pad-Disc
,”
Tribol. Int.
,
110
, pp.
307
317
. 10.1016/j.triboint.2017.02.032
36.
Bansal
,
D. G.
,
Kirkham
,
M.
, and
Blau
,
P. J.
,
2013
, “
Effects of Combined Diffusion Treatments and Cold Working on the Sliding Friction and Wear Behavior of Ti–6Al–4V
,”
Wear
,
302
(
1–2
), pp.
837
844
. 10.1016/j.wear.2013.01.034
37.
Qian
,
W. J.
,
Chen
,
G. X.
, and
Zhou
,
Z. R.
,
2013
, “
Dynamic Transient Analysis of Squealing Vibration of a Reciprocating Sliding System
,”
Wear
,
301
(
1–2
), pp.
47
56
. 10.1016/j.wear.2012.12.057
38.
Meng
,
F. M.
, and
Zhang
,
W.
,
2018
, “
Effects of Compound Groove Texture on Noise of Journal Bearing
,”
ASME J. Tribol.
,
140
(
3
), p.
031703
. 10.1115/1.4038353
39.
Abdo
,
J.
,
Nouby
,
M.
,
Mathivanan
,
D.
, and
Srinivasan
,
K.
,
2010
, “
Reducing Disc Brake Squeal Through FEM Approach and Experimental Design Technique
,”
Int. J. Veh. Noise Vib.
,
6
(
2–4
), pp.
230
246
. 10.1504/IJVNV.2010.036688
You do not currently have access to this content.