Abstract

A revised fractal contact model considering asperity interactions is proposed. The displacement of the mean of asperity heights is used to represent the effects of the asperity interactions. Then, the critical contact area will be dependent on the contact load, and the contact stiffness will be an integral whose integrand is an implicit expression. The fractal dimension and the fractal roughness are obtained by the measurement of the surface profile to calculate the theoretical contact stiffness. The measurement of deformation is conducted to obtain the actual contact stiffness for verification, and the results show that the proposed model is closer to the experimental results than other models without considering asperity interactions. Once the contact stiffness is determined, a new equivalent normal stiffness model for bolted joints considering the contact of two rough surfaces is also proposed. Since the contact stiffness is dependent on the clamped force, the equivalent normal stiffness for bolted joints is calculated iteratively at given initial preload and external separating force. Different from the classical model, the equivalent normal stiffness for bolted joint decreases with the external separating force increases, and this stiffness loss will become larger with initial preload decreases. In this sense, the proposed equivalent normal stiffness model is a way to determine the suitable initial preload for different sizes of bolts when the stiffness loss is restricted to a certain range.

References

1.
Juvinall
,
R. C.
, and
Marshek
,
K. M.
,
2012
,
Fundamentals of Machine Component Design
,
John Wiley & Sons
,
Hoboken, NJ
.
2.
Yamamoto
,
A.
,
1980
, “
The Theory and Computation of Threads Connection
,” Youkendo, Tokyo, pp.
39
54
.
3.
Motosh
,
N.
,
1976
, “
Determination of Joint Stiffness in Bolted Connections
,”
ASME J. Eng. Ind.
,
98
(
3
), pp.
858
861
. 10.1115/1.3439043
4.
Lehnhoff
,
T. F.
,
McKay
,
M. L.
, and
Bellora
,
V. A.
,
1992
, “
Member Stiffness and Bolt Spacing of Bolted Joints
,”
ASME Pressure Vessels and Piping Division, PVP
,
248
, pp.
63
72
.
5.
Lehnhoff
,
T. F.
,
Ko
,
K. I.
, and
McKay
,
M. L.
,
1994
, “
Member Stiffness and Contact Pressure Distribution of Bolted Joints
,”
ASME J. Mech. Des.
,
116
(
2
), pp.
550
557
. 10.1115/1.2919413
6.
Nassar
,
S. A.
, and
Abboud
,
A.
,
2009
, “
An Improved Stiffness Model for Bolted Joints
,”
ASME J. Mech. Des.
,
131
(
12
), p.
121001
. 10.1115/1.4000212
7.
Canyurt
,
O. E.
, and
Sekercioglu
,
T.
,
2016
, “
A New Approach for Calculating the Stiffness of Bolted Connections
,”
Proc. Inst. Mech. Eng., Part L
,
230
(
2
), pp.
426
435
. 10.1177/1464420715576557
8.
Greenwood
,
J. A.
, and
Williamson
,
J. B. P. P.
,
1966
, “
Contact of Nominally Flat Surfaces
,”
Proc. R. Soc. London
,
295
(
1442
), pp.
300
319
. 10.1098/rspa.1966.0242
9.
Sista
,
B.
, and
Vemaganti
,
K.
,
2014
, “
Estimation of Statistical Parameters of Rough Surfaces Suitable for Developing Micro-Asperity Friction Models
,”
Wear
,
316
(
1
), pp.
6
18
. 10.1016/j.wear.2014.04.012
10.
Ciulli
,
E.
,
Ferreira
,
L. A.
,
Pugliese
,
G.
, and
Tavares
,
S. M. O.
,
2008
, “
Rough Contacts Between Actual Engineering Surfaces: Part I. Simple Models for Roughness Description
,”
Wear
,
264
(
11
), pp.
1105
1115
. 10.1016/j.wear.2007.08.024
11.
Wen
,
Y.
,
Tang
,
J.
,
Zhou
,
W.
, and
Zhu
,
C.
,
2018
, “
An Improved Simplified Model of Rough Surface Profile
,”
Tribol. Int.
,
125
, pp.
75
84
. 10.1016/j.triboint.2018.04.025
12.
Majumdar
,
A.
, and
Bhushan
,
B.
,
1990
, “
Role of Fractal Geometry in Roughness Characterization and Contact Mechanics of Surfaces
,”
ASME J. Tribol.
,
112
(
2
), pp.
205
216
. 10.1115/1.2920243
13.
Majumdar
,
A.
, and
Bhushan
,
B.
,
1991
, “
Fractal Model of Elastic-Plastic Contact Between Rough Surfaces
,”
ASME J. Tribol.
,
113
(
1
), pp.
1
11
. 10.1115/1.2920588
14.
Yan
,
W.
, and
Komvopoulos
,
K.
,
1998
, “
Contact Analysis of Elastic-Plastic Fractal Surfaces
,”
J. Appl. Phys.
,
84
(
7
), pp.
3617
3624
. 10.1063/1.368536
15.
Liu
,
W.
,
Yang
,
J.
,
Xi
,
N.
,
Shen
,
J.
, and
Li
,
L.
,
2015
, “
A Study of Normal Dynamic Parameter Models of Joint Interfaces Based on Fractal Theory
,”
J. Adv. Mech. Des. Syst. Manuf.
,
9
(
5
), p.
JAMDSM0070
. 10.1299/jamdsm.2015jamdsm0070
16.
Liu
,
W.
,
2016
,
A Study of Contact Characteristic Parameters of Machine Joint Interfaces Based on Fractal Theory
,
Huazhong University of Science and Technology
.
17.
Morag
,
Y.
, and
Etsion
,
I.
,
2007
, “
Resolving the Contradiction of Asperities Plastic to Elastic Mode Transition in Current Contact Models of Fractal Rough Surfaces
,”
Wear
,
262
(
5
), pp.
624
629
. 10.1016/j.wear.2006.07.007
18.
Liou
,
J. L.
, and
Lin
,
J. F.
,
2006
, “
A New Method Developed for Fractal Dimension and Topothesy Varying With the Mean Separation of Two Contact Surfaces
,”
ASME J. Tribol.
,
128
(
3
), pp.
515
524
. 10.1115/1.2197839
19.
Liou
,
J. L.
, and
Lin
,
J. F.
,
2007
, “
A New Microcontact Model Developed for Variable Fractal Dimension, Topothesy, Density of Asperity, and Probability Density Function of Asperity Heights
,”
ASME J. Appl. Mech.
,
74
(
4
), pp.
603
613
. 10.1115/1.2338059
20.
Liou
,
J. L.
,
Lin
,
J. F.
,
Liou
,
J. L.
, and
Lin
,
J. F.
,
2010
, “
A Modified Fractal Microcontact Model Developed for Asperity Heights With Variable Morphology Parameters
,”
Wear
,
268
(
1
), pp.
133
144
. 10.1016/j.wear.2009.07.003
21.
Yuan
,
Y.
,
Cheng
,
Y.
,
Liu
,
K.
, and
Gan
,
L.
,
2017
, “
A Revised Majumdar and Bushan Model of Elastoplastic Contact Between Rough Surfaces
,”
Appl. Surf. Sci.
,
425
, pp.
1138
1157
. 10.1016/j.apsusc.2017.06.294
22.
Jamshidi
,
H.
, and
Ahmadian
,
H.
,
2020
, “
A Modified Rough Interface Model Considering Shear and Normal Elastic Deformation Couplings
,”
Int. J. Solids Struct.
,
203
, pp.
57
72
. 10.1016/j.ijsolstr.2020.07.013
23.
Balaji
,
N. N.
,
Chen
,
W.
, and
Brake
,
M. R.
,
2020
, “
Traction-Based Multi-Scale Nonlinear Dynamic Modeling of Bolted Joints: Formulation, Application, and Trends in Micro-Scale Interface Evolution
,”
Mech. Syst. Signal Process.
,
139
, p.
106615
. 10.1016/j.ymssp.2020.106615
24.
Zhao
,
Y.
,
Maietta
,
D. M.
, and
Chang
,
L.
,
2000
, “
An Asperity Microcontact Model Incorporating the Transition From Elastic Deformation to Fully Plastic Flow
,”
ASME J. Tribol.
,
122
(
1
), pp.
86
93
. 10.1115/1.555332
25.
Zhao
,
Y.
, and
Chang
,
L.
,
2001
, “
A Model of Asperity Interactions in Elastic-Plastic Contact of Rough Surfaces
,”
ASME J. Tribol.
,
123
(
4
), pp.
857
864
. 10.1115/1.1338482
26.
Sahoo
,
P.
,
2006
, “
Adhesive Friction for Elastic–Plastic Contacting Rough Surfaces Considering Asperity Interaction
,”
J. Phys. D: Appl. Phys.
,
39
(
13
), pp.
2809
2818
. 10.1088/0022-3727/39/13/026
27.
Ciavarella
,
M.
,
Greenwood
,
J. A.
, and
Paggi
,
M.
,
2008
, “
Inclusion of “Interaction” in the Greenwood and Williamson Contact Theory
,”
Wear
,
265
(
5–6
), pp.
729
734
. 10.1016/j.wear.2008.01.019
28.
Johnson
,
K. L.
,
1987
,
Contact Mechanics
,
Cambridge University Press
,
Cambridge
.
29.
Wang
,
S.
, and
Komvopoulos
,
K.
,
1994
, “
A Fractal Theory of the Interfacial Temperature Distribution in the Slow Sliding Regime: Part I—Elastic Contact and Heat Transfer Analysis
,”
ASME J. Tribol.
,
116
(
4
), pp.
812
822
. 10.1115/1.2927338
30.
Stronge
,
W. J.
,
2000
,
Contact Problems for Elasto-Plastic Impact in Multi-Body Systems
,
Springer
,
Berlin/Heidelberg
, pp.
189
234
.
31.
Li
,
P. L.
, and
Lin
,
J. F.
,
2005
, “
An Elastoplastic Microasperity Contact Model for Metallic Materials
,”
ASME J. Tribol.
,
127
(
3
), pp.
666
672
. 10.1115/1.1843830
32.
Wang
,
R.
,
Zhu
,
L.
, and
Zhu
,
C.
,
2017
, “
Research on Fractal Model of Normal Contact Stiffness for Mechanical Joint Considering Asperity Interaction
,”
Int. J. Mech. Sci.
,
134
, pp.
357
369
. 10.1016/j.ijmecsci.2017.10.019
33.
Huang
,
X.
,
2016
,
Research on Stiffness of Bolted Joints Considering Joint Surfaces Contact
,
Dalian University of Technology
.
34.
Zhuang
,
Y.
,
Li
,
B.
,
Hong
,
J.
,
Yang
,
G.
,
Zhu
,
L.
, and
Liu
,
H.
,
2013
, “
A Normal Contact Stiffness Model of the Interface
,”
J. Shanghai Jiaotong Univ.
,
47
(
2
), pp.
180
186
.
You do not currently have access to this content.