Abstract

In a rolling contact, the tribological properties in terms of friction, wear, and fatigue are significantly influenced by the surface roughness. Due to solid contact of the surfaces in the contact area, the roughness and thus also the tribological properties change during the service life of the contact. The initial load leads to major changes of the tribological properties figured out by Brecher et al. (2019, “Influence of the Metalworking Fluid on the Micropitting Wear of Gears,” Wear, 61(434–435), p. 202996). Prediction of the initial changes in topography in the contact area is necessary for specific optimization of rolling contacts. Especially for dry rolling–sliding contact, the roughness of the surfaces is crucial for the lifetime, which is part of the investigations within the DFG priority program 2074 (357505886). In this work, an elastic-plastic contact algorithm for calculating plastic deformation for dry contact of rough surfaces with large contact area and high resolution is presented. Due to the nonlinearity behavior associated with plastic deformation, the plastic contact algorithm is based on an iterative approach. An optimized meshing strategy is implemented to calculate the elastic pressure distribution on the surface. Corresponding to the two-dimensional pressure distribution, the three-dimensional stress distribution allows the consideration of residual stresses and interactions of the microscopic peaks of the rough surface. Furthermore, the three-dimensional plastic strain distribution allows the application of an analytical approach to represent the plastic deformation of the surface. Finally, the solution of a plastic contact calculation with an exemplary topography measured on a real rough surface is presented.

References

1.
Brecher
,
C.
,
Renkens
,
D.
, and
Löpenhaus
,
C.
,
2016
, “
Method for Calculating Normal Pressure Distribution of High Resolution and Large Contact Area
,”
ASME J. Tribol.
,
138
(
1
), p.
011402
. 10.1115/1.4031164
2.
Norm
,
2010
,
Geometrical Product Specifications (GPS)—Surface Texture: Profile Method—Terms, Definitions and Surface Texture Parameters (ISO 4287), Beuth, Berlin
.
3.
Linke
,
H.
,
2016
,
Cylindrical Gears Calculation—Materials—Manufacturing
,
Hanser
,
München
.
4.
Norm
,
1996
,
Geometrical Product Specifications (GPS)—Surface Texture: Profile Method—Rules and Procedures for the Assessment of Surface Texture, (ISO 4288), Beuth, Berlin
.
5.
Popov
,
V. L.
,
2012
, “Methode der Dimensionsreduktion in der Kontaktmechanik und Reibungsphysik: Eine Brücke Zwischen der Mikro- und der Makrowelt,”
Gesellschaft für Tribologie e.V. (Hrsg) 53. Tribologie-Fachtagung
,
Reibung, Schmierung und Verschleiß. Eigendruck der Gesellschaft für Tribologie e.V.
,
Aachen
.
6.
Czichos
,
H.
, and
Habig
,
K.-H.
,
2010
,
Tribologie-Handbuch. Tribometrie, Tribomaterialien, Tribotechnik
,
Vieweg + Teubner
,
Wiesbaden
.
7.
Wang
,
C.
, and
Schipper
,
D.
,
2020
, “
A Numerical-Analytical Approach to Determining the Real Contact Area of Rough Surface Contact
,”
Tribol.-Mater., Surf. Interfaces
,
14
(
3
), pp.
166
176
. 10.1080/17515831.2020.1720382
8.
Gao
,
Y. F.
, and
Bower
,
A. F.
,
2006
, “
Elastic–Plastic Contact of a Rough Surface With Weierstrass Profile
,”
Proc. R. Soc. A
,
462
(
2065
), pp.
319
348
. 10.1098/rspa.2005.1563
9.
Pei
,
L.
,
Hyun
,
S.
,
Molinari
,
J. F.
, and
Robbins
,
M. O.
,
2005
, “
Finite Element Modeling of Elasto-Plastic Contact Between Rough Surfaces
,”
J. Mech. Phys. Solids
,
53
(
11
), pp.
2385
2409
. 10.1016/j.jmps.2005.06.008
10.
Hauer
,
F.
,
2014
, “
Die elasto-plastische Einglättung rauer Oberflächen und ihr Einfluss auf die Reibung in der Umformtechnik
,”
Diss.
,
Friedrich-Alexander-Universität
,
Erlangen-Nürnberg
.
11.
Bartel
,
D.
,
2010
,
Simulation von Tribosystemen. Grundlagen und Anwendungen
,
Vieweg + Teubner
,
Wiesbaden
.
12.
Frérot
,
L.
,
Bonnet
,
M.
,
Molinari
,
J. F.
, and
Anciaux
,
G.
, “
A Fourier-Accelerated Volume Integral Method for Elastoplastic Contact
,”
Comput. Methods Appl. Mech. Eng.
,
351
, pp.
951
976
. 10.1016/j.cma.2019.04.006
13.
Jacq
,
C.
,
Nélias
,
D.
,
Lormand
,
G.
, and
Girodin
,
D.
,
2002
, “
Development of a Three- Dimensional Semi-Analytical Elastic-Plastic Contact Code
,”
ASME J. Tribol.
,
124
(
4
), pp.
653
667
. 10.1115/1.1467920
14.
Wang
,
F.
, and
Keer
,
L. M.
,
2005
, “
Numerical Simulation for ThreeDimensional Elastic-PlasticContact With Hardening Behavior
,”
ASME J. Tribol.
,
127
(
3
), pp.
494
502
. 10.1115/1.1924573
15.
Boussinesq
,
J.
,
1885
,
Application des Potentiels à L'étude de L'équilibre et du Mouvement des Solides élastiques
,
Gauthier-Villars
,
Paris
.
16.
Love
,
A. E. H.
,
1929
, “
The Stress Produced in a Semi-Infinite Solid by Pressure on Part of the Boundary
,”
Math. Phys. Eng. Sci.
,
228
, pp.
377
420
.
17.
Börnecke
,
K.
,
1976
, “
Beanspruchungsgerechte Wärmebehandlung von Einsatzgehärteten Zylinderrädern
,”
Diss.
,
RWTH Aachen University
,
Aachen
.
18.
Ismar
,
H.
, and
Mahrenholtz
,
O.
,
1979
,
Technische Plastomechanik
,
Friedr. Vieweg & Sohn
,
Braunschweig
.
19.
Rösler
,
J.
,
Harders
,
H.
, and
Bäker
,
M.
,
2019
,
Mechanisches Verhalten der Werkstoffe
,
Springer
,
Braunschweig
.
20.
Airy
,
G. B.
,
1862
, “
On the Strains in the Interior of Beams
,”
Philos. Trans. R. Soc. London
,
153
, pp.
49
79
.
21.
Love
,
A. E. H.
,
1892
,
A Treatise on the Mathematical Theory of Elasticity
,
Cambridge University Press
,
Cambridge
.
22.
Hertz
,
H.
,
1882
, “
Über die Berührung Fester Elastischer Körper
,”
J. Reine Angew. Math.
,
92
, pp.
156
171
.
23.
Kloos
,
K. H.
, and
Broszeit
,
E.
,
1976
, “
Grundsätzliche Betrachtungen zur Oberflächen-Ermüdung
,”
J. Mater. Technol.
,
7
(
3
), pp.
85
124
.
You do not currently have access to this content.